重陽子標的によるη中間子光生成反応を介した η中間子-核子散乱S波有効レンジパラメータの 精密決定

[Phys. Rev. C 96, 042201(R) (2017)]

鎌野 寬之(KEK)

共同研究者: 中村 聡 (U. Cruzeiro do Sul)、石川 貴嗣 (東北大ELPH)

KEK理論センター研究会「ハドロン・原子核物理の理論研究最前線 2017」 KEK, 11月20-22日, 2017

Introduction: S-wave ηN effective range parameters

✓ S-wave η-nucleon scattering amplitude [F = (S - 1)/(2ik)]:

Introduction: S-wave ηN effective range parameters

S-wave η-nucleon scattering amplitude [F = (S - 1)/(2ik)]:

Fundamental quantities of low energy QCD.

- \rightarrow η is regarded as a NG boson for spontaneous breaking of (approximate) chiral symmetry in the 3-flavor (u, d, s) sector (except for mixing from η₀)
- Strong correlation with possible existence of η-mesic nuclei.
- Help precise determination of pole position of the N(1535)1/2⁻ resonance.

Introduction: S-wave ηN effective range parameters

η meson: unstable against the strong interaction & electrically neutral.

× Direct measurement of the ηN scattering

 \rightarrow Life time of η is too short to be used as incident beam.

× X-ray measurements of eta-mesic atom

 \rightarrow η cannot be bound electromagnetically to form an atom.

One has to rely on *indirect* information !!

e.g.)

> Analysis of $\pi N \rightarrow \pi N$, $\pi N \rightarrow \eta N$, $\gamma N \rightarrow \pi N$, $\gamma N \rightarrow \eta N$

→ ηN interaction appears through coupled-channel effects

> Analysis of pn \rightarrow ηd reaction

→ ηN interaction is embedded in strongly interacting final 3-body ηNN (ηd) system

Introduction: S-wave nN effective range parameters S-wave effective range parameters scatter a lot !!

Scattering length a_{nN}

- > Re $a_{\eta N} \sim 0.2 0.9$ fm $\rightarrow \Delta$ (Re $a_{\eta N}$) ~ 0.7 fm
- > Im $a_{\eta N} \sim 0.2 0.3$ fm $\rightarrow \Delta(\text{Im } a_{\eta N}) \sim 0.1$ fm

Relatively small uncertainty in the imaginary part is due to the optical theorem.

✓ Effective range r_{nN}

Re r_{nN} ~ -6 – +1 fm

Im r_{nN} ~ -1 – 0 fm

→ Δ(Re r_{nN}) ~ 7 fm

$$\rightarrow \Delta(\text{Im } r_{nN}) \sim 1 \text{ fm}$$

c.f.) πN & NN cases:

πN scattering length:

 $a^+ = (7.6 \pm 3.1) \cdot 10^{-3} M_\pi^{-1}$ (isoscalar) $a^- = (86.1 \pm 0.9) \cdot 10^{-3} M_\pi^{-1}$ (isovector)

NN	a (fm)	r_0 (fm)
nn	-18.9 ± 0.4	2.75 ± 0.11
np	-23.740 ± 0.020	2.77 ± 0.05
pp	-17.3 ± 0.4	2.85 ± 0.04

Introduction: S-wave nN effective range parameters S-wave effective range parameters scatter a lot !!

From Ishikawa-san's talk.

Clear separation of the nN interaction from other reaction processes is essential !!

Highly desirable to utilize reactions (& kinematics) in which

- 1) mechanisms associated with ηN interaction are significantly enhanced,
- 2) while other background mechanisms are suppressed.

> Im $r_{nN} \sim -1 - 0$ fm $\rightarrow \Delta(\text{Im } r_{nN}) \sim 1$ fm

 $a^{-} = (86.1 \pm 0.9) \cdot 10^{-3} M_{\pi}^{-1}$ (isovector)

NN	a (fm)	r_0 (fm)
nn	-18.9 ± 0.4	2.75 ± 0.11
np	-23.740 ± 0.020	2.77 ± 0.05
pp	-17.3 ± 0.4	2.85 ± 0.04

$\gamma d \rightarrow \eta pn$ reaction at the "ELPH kinematics"

- ✓ New measurement of γd→ηpn at ELPH, Tohoku Univ. (T. Ishikawa et. al., the ELPH-2844 experiment)
 - > Consider a *special* kinematics with $E_{\gamma} \sim 940$ MeV and $\theta_p \sim 0$ degree.
 - → refer to as the "ELPH kinematics"

$\gamma d \rightarrow \eta pn$ reaction at the "ELPH kinematics"

- ✓ New measurement of γd→ηpn at ELPH, Tohoku Univ. (T. Ishikawa et. al., the ELPH-2844 experiment)
 - > Consider a *special* kinematics with $E_{\gamma} \sim 940$ MeV and $\theta_p \sim 0$ degree.
 - → refer to as the "ELPH kinematics"

- Produced η will strongly interact with the spectator neutron.
- Scattered proton has little chance to interact with the η & neutron.

Ideal kinematical condition to extract η-nucleon effective range parameters !!

Model for $\gamma d \rightarrow \eta pn$

✓ Reaction mechanisms for γd → ηpn

Dynamical Coupled-Channels (DCC) approach to meson production reactions

Dynamical Coupled-Channels (DCC) model:

[Matsuyama et al., PR439(2007)193; HK, et al., PRC88(2013)035209; 90(2014)065204; 94(2016)015201]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} q^{2} dq V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$\frac{CC}{CC} \quad \text{off-shell} \quad \text{effect}$$

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, [\pi\Delta, \sigma N, \rho N], K\Lambda, K\Sigma, \omega N \cdots)$$

$$\text{quasi two-body channels of} \quad \text{three-body TITN}$$

Summing up all possible transitions between reaction channels !!
 (→ satisfies multichannel two- and three-body unitarity)

e.g.) πN scattering

Dynamical Coupled-Channels (DCC) approach to meson production reactions

Dynamical Coupled-Channels (DCC) model:

[Matsuyama et al., PR439(2007)193; HK, et al., PRC88(2013)035209; 90(2014)065204; 94(2016)015201]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} q^{2} dq V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$\frac{CC}{\text{off-shell}} \text{effect}$$

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, [\pi\Delta, \sigma N, \rho N], K\Lambda, K\Sigma, \omega N \cdots)$$

$$\text{quasi two-body channels of three-body mmN}$$

- Current developing model:
 - Constructed by simultaneous analysis of
 - πN scattering (W < 2.3 GeV)
 - πp → ηN, KΛ, KΣ (W < 2.1 GeV)
 - γp → πN, ηN, KΛ, KΣ (W < 2.1 GeV)
 - γ 'n' $\rightarrow \pi N$, ηN (W < 2 GeV, ongoing)
 - ep \rightarrow e' π N, (W < 2 GeV, Q² < 6 GeV², ongoing)
 - Single- and double-spin polarization data are also taken into account.
 - Results in fitting total ~50,000 data points.

Dynamical Coupled-Channels (DCC) approach to meson production reactions

Dynamical Coupled-Channels (DCC) model:

[Matsuyama et al., PR439(2007)193; HK, et al., PRC88(2013)035209; 90(2014)065204; 94(2016)015201]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{CC} C_{effect}$$

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi^{2})$$

$$(\gamma^{(*)}N, \pi N, \eta N, \pi^{2})$$

Current developing model:

Constructed by simultaneous analysis of

- πN scattering (W < 2.3 GeV)
- πp → ηN, KΛ, KΣ (W < 2.1 GeV)
- γp → πN, ηN, KΛ, KΣ (W < 2.1 GeV)
- γ 'n' $\rightarrow \pi N$, ηN (W < 2 GeV, ongoing)
- ep \rightarrow e' π N, (W < 2 GeV, Q² < 6 GeV², ongoi

Single- and double-spin polarization data are also taken into account.

Results in fitting total ~50,000 data points.

e.g.) $d\sigma/d\Omega$ for $\gamma p \rightarrow \eta p$

Examining validity of our model

- Angular distributions of η meson for $\gamma d \rightarrow \eta pn$

Our prediction is in excellent agreement with the existing data !!
 Reliable study of ηN effective range parameters is possible.

Contribution of each mechanism

3-fold DCS for $\gamma d \rightarrow \eta pn$ at the ELPH kinematics ($E_{\gamma} = 940 \text{ MeV } \& \theta_{p} = 0 \text{ deg.}$)

Examining sensitivity of ηN scattering effective range parameters to the $\gamma d \rightarrow \eta pn$ cross section

 Off-shell S-wave ηN→ηN amplitude from our DCC model is replaced by the on-shell parametrization [up to O(k²) in denominator]:

- 2) Vary scattering length $(a_{\eta N})$ & effective range $(r_{\eta N})$ freely, and see how the $\gamma d \rightarrow \eta pn$ cross section at the ELPH kinematics changes.
 - NOTE: We have confirmed that at this special kinematics, the off-shell effect of ηN→ηN rescattering process is negligibly small and safely replaced with the on-shell amplitude.

Sensitivity of scattering length

3-fold DCS for $\gamma d \rightarrow \eta pn$ at the ELPH kinematics ($E_{\gamma} = 940 \text{ MeV } \& \theta_{p} = 0 \text{ deg.}$)

- Current estimated range for a_{nN} :
 - Re a_{ηN} ~ 0.2 0.9 fm $[\Delta(\text{Re }a_{nN}) \sim 0.7 \text{ fm}]$
 - Im a_{nN} ~ 0.2 0.3 fm $[\Delta(\text{Im } a_{nN}) \sim 0.1 \text{ fm }]$

Once "R" data of 5% error binned in 1 MeV are given, we have

 Δ (Re a_{nN}) ~ 0.7 fm \rightarrow 0.2 fm

To reduce $\Delta(\text{Im } a_{nN})$, one needs better accuracy of R data.

Sensitivity of effective range

3-fold DCS for $\gamma d \rightarrow \eta pn$ at the ELPH kinematics ($E_v = 940 \text{ MeV } \& \theta_p = 0 \text{ deg.}$)

- Current estimated range for r_{nN}:
 - Re r_{ηN} ~ -6 +1 fm [Δ(Re r_{ηN}) ~ 7 fm]

Once "R" data of 5% error binned in 1 MeV are given, we have

 $\Delta(\text{Re r}_{nN}) \sim 7 \text{ fm} \rightarrow 1 \text{ fm}$

To reduce $\Delta(\text{Im } r_{\eta N})$, one needs better accuracy of R data.

Summary

- ✓ Examined a possible extraction of S-wave ηN scattering effective range parameters ($a_{ηN} \& r_{ηN}$) using the γd → ηpn data from forthcoming experiment at ELPH [Ishikawa et al., ELPH-2844 exp.]
- ✓ Dynamical Coupled-Channels (DCC) model is used for (off-shell)
 γ-nucleon and meson-baryon elementary amplitudes.
 - → parameter-free prediction gives excellent agreement with currently available γd → ηpn data
 - → enable a reliable investigation of $\gamma d \rightarrow \eta pn$

Achievable *IF* the requested beam time of the ELPH-2844 experiment is *FULLY* adopted !!

 ✓ Once "R" data with 5% error binned in 1 MeV width are given, uncertainties in real parts of a_{nN} & r_{nN} are significantly reduced as

 $\Delta(\text{Re }a_{\eta N}) \sim 0.7 \text{ fm} \rightarrow 0.2 \text{ fm} (~70\% \text{ reduced})$

 $\Delta(\text{Re r}_{nN}) \sim 7 \text{ fm} \rightarrow 1 \text{ fm} (\sim 85\% \text{ reduced})$

Ongoing works

Study of S=-2 baryon-baryon interaction & H dibaryons with $K^- d \rightarrow K^0 (BB)_{S=-2,Q=0}$ (off-shell) amplitudes from our DCC model of KN reaction HK et al., PRC90(2014)065204 $\succ \underline{K^{-}d \rightarrow K^{0}(BB)}_{S=-2,Q=0} reaction$ K⁰ K-B Total strangeness S= -2 d Total charge Q = 0R' $K^{-}d \rightarrow K^{0}(\Xi^{-}p)$ (BB)_{S=-2} interaction: = 1 GeV, $\theta_{\kappa_0} = 0$ deg.) (р_к-Phenomenological model 0.2 Chiral EFT Impulse + **BB** rescatt. Lattice QCD, ... 0.15

Once the data are available, we do partial-wave analysis, and

- Determine (BB)_{S=-2} interaction
- Search for H dibaryon

