KEK理論センター研究会「ハドロン・原子核物理の理論研究最前線 2017」、 Nov. 2017

Nuclear Astrophysics

-Neutron Stars, Nuclear Matter, Symmetry Energy-

Kei Iida (Kochi University)

Contents

• Neutron stars: Introduction and recent topics

Nuclear matter: Introduction and recent topics

Neutron stars

Discovery of pulsars and neutron star observations

In 1967, Hewish & Bell discovered a "pulsar" emitting periodic radio pulses, PSR B1919+21 (at that time, referred to as LGM "Little Green Men"-1.)

Imaginary drawing of a pulsar (gigantic "dynamo")

1968: A pulsar discovered in the Crab Nebula.

The very short (33 msec) period of the Crab pulsar helped to identify pulsars as neutron stars!

Crab Nebula (NASA/ESA)

Pulsar glitch

From young pulsars, glitches, sudden decrease in the pulse period, are frequently observed.

Consistent with backreaction to disappearance of outwardly moving vortices, suggesting that superfluidity should occur in a neutron star!

Vortices in rotating Bose condensate of Rb atoms (Madison et al.(2000))

Vortices in rotating superfluid helium (Yarmchuk et al.(1979))

Various types of pulsars

•Double pulsar (PSR J0737-3039 alone)

•X-ray pulsars (accretion-powered pulsars)

•Anomalous X-ray pulsars (presumably, magnetars)

Imaginary drawing by NASA

Neutron star mass determination by Hulse & Taylor

A pulsar with a binary companion: Observed orbital motion \rightarrow mass measurement!

Neutron star-neutron star binaries									
1518+49	$1.56^{+0.13}_{-0.44}$	(88)	1518+49 companion	$1.05^{+0.45}_{-0.11}$	(88)				
1534+12	$1.3332^{+0.0010}_{-0.0010}$	(88)	1534+12 companion	$1.3452^{+0.0010}_{-0.0010}$	(88)				
1913+16	1.4408+0.0003	(88)	1913+16 companion	$1.3873^{+0.0003}_{-0.0003}$	(88)				
2127+11C	$1.349^{+0.040}_{-0.040}$	(88)	2127+11C companion	$1.363^{+0.040}_{-0.040}$	(88)				
J0737-3039A	$1.337_{-0.005}^{+0.005}$	(46)	J0737-3039B	$1.250^{+0.005}_{-0.005}$	(46)				
Mean = 1.34	M_{\odot} , weighted m	ean = 1.	41 <i>M</i> _☉ Lat	timer & Prakash (2	2004)				

Neutron star mass determination by Hulse & Taylor (contd.)

Observed decrease in the orbital period was successfully explained by emission of gravitational waves predicted by general relativity.

Multimessenger observations of GW170817

GRB start Merger 2500 Lightcurve from Fermi/GBM (10 - 50 keV)3.5 d 1.5 d 2250 37.5 2000 1750 37 1500 1.4< 0.051250 $|\chi_z| < 0.89$ ightcurve from Fermi/GBM (50 - 300 keV) log[Luminosity (erg s^{-1} Å⁻¹)] 1750 36.5 1500 1.2 · 1250 MB $m_2 [\mathrm{M}_\odot]$ 1.0 36 1000 750 MStatic 5.5 d 6.5 d Lightcurve from INTEGRAL/SPI-ACS 37.5 MB 120000 (> 100 keV)0.8117500 37 MB 115000 112500 0.636.5 Gravitational-wave time-frequency map 400 300 1.01.52.02.53.0200 $m_1 \, [\mathrm{M}_\odot]$ 36 10,000 20,000 10,000 20,000 100 -Wavelength (Å) 50 Figure 3 | Kilonova models compared with the AT 2017gfo spectra. -10-2

Abbott et al. ApJ 848, L13 (2017).

Time from merger (s)

(Hz)

Pian et al. Nature **551,** 67 (2017).

観測されている高密度縮退星

Observed masses

Pulsar twice as heavy as the Sun

Demorest et al. (2010)

The Best Measured Neutron Star Radii

	Name	R _{ss} (km/D)	D (kpc)	kT _{eff,∞} (eV)	N _H (10 ²⁰ cm ⁻²)	Ref.	$R_{\infty} < 5\%$
	omega Cen (Chandra)	13.5 ± 2.1	5.36 ±6%	66 ⁺⁴ .5	(9)	Rutledge et al (2002)	Caveats:
	omega Cen** (XMM)	13.6 ± 0.3	5.36 ±6%	67 ±2	9 ± 2.5	Gendre et al (2002)	• All IDd by X-ray spectrum (47 Tuc,
	M13** (XMM)	12.6 ± 0.4	7.80 ±2%	76 ±3	(1.1)	Gendre et al (2002)	Omega Cen now have optical
	47 Tuc X7 (Chandra)	34 ₋₁₃ +22	5.13 ±4%	84 ⁺¹³ -12	0.13 ^{+0.06} -0.04	Heinke et al (2006)	counterparts)calibration
	M28** (Chandra)	14.5 _{-3.8} +6.9	5.5 ±10%	90 ₋₁₀ +30	26 ± 4	Becker et al (2003)	uncertainties
	M30 (Chandra)	16.9 _{-4.3} +5.4		94 ₋₁₂ +17	2.9 ^{+1.7} .12	Lugger et al (2006)	Distances
	NGC 2808 (XMM)	??	9.6 (?)	103 ₋₃₃ +18	18 ⁺¹¹ -7	Webb etal (2007)	Carretta et al (2000), Thompson et al (2001)
Quiescent low-mass X-ray binaries in globular clustersApparent radius : RDistance to the							
				$=\frac{1}{\sqrt{1-20}}$	$\frac{1}{GM/Rc^2}$	globular cluster	

Apparent radius:
$$R_{\infty} = \frac{R}{\sqrt{1 - 2GM/Rc^2}}$$

Rutledge (2010)

Deducing M/R from light curves of msec pulsars

Sotani & Miyamoto (2017)

https://heasarc.gsfc.nasa.gov/docs/nicer/nicer_about.html

Nuclear matter

Baryon Chemical Potential $\mu_{\rm B}$

By Fukushima

Systems composed of nuclear matter

Pethick & Ravenhall, ARNPS **45** (1995) 429.

Microscopic EOS calculations

Symmetric nuclear matter

Variational method: Overbinding without phenomenological three-nucleon forces

Microscopic EOS calculations (contd.)

Pure neutron matter

Ref. Carlson and Reddy, PRL 95 (2005) 060401.

Phenomenological EOS parameters

S

Energy per nucleon of bulk nuclear matter near the saturation point (nucleon density *n*, neutron excess $\alpha = (n_n - n_p)/n$):

$$w = w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + \left[S_0 + \frac{L}{3n_0}(n - n_0)\right]\alpha^2$$

 n_0, w_0 saturation density & energy of symmetric nuclear matter

L density symmetry coefficient

ゼロ温度での核物質の状態方程式

非圧縮率

9つの極端な例
・安定核の半径・質量 データは同様に再現
・将来の不安定核 データで峻別可能?

Ref. Oyamatsu & Iida, PTP **109** (2003) 631; Kohama, Iida, & Oyamatsu PRC **72** (2005) 024602. Many-body perturbation calculations with chiral 2N, 3N, 4N interactions

1st, 2nd, 3rd order pp and 3rd ph contributions due to 2N interactions:

Ref. Holt & Kaiser, PRC 95 (2017) 034326.

1st, 2nd order pp contributions due to 3N and 4N interactions:

Ref. Krüger, Tews, Hebeler, & Schwenk, PRC 88 (2013) 025802.

Many-body perturbation calculations with chiral 2N, 3N, 4N interactions

Up to 4th order:

3N interaction parameters fitted to the empirical saturation region and triton binding energy

Ref. Iida & Oyamatsu, EPJA 50 (2014) 42. これまでの核物質研究のまとめ 中性子ドリップ線 中性子星クラストのずりモード Exp. (CN2004)
 mass-measured (AWT03)
 stable drip line EOS C (L=146 Me EOS G(L=5.7 MeV) ළී60 -中性子過剰核の半径・質量 ₽<u>40</u> EOS uncertainty: $_0T_2$ $_{0}T_{2}$ comparable with shell and pairing effects 100 60 80 Neutron number ねじれ振動 (北大·日置氏) 核物質の状態方程式 w (energy) 軽い中性子星の質量・半径 pure neutron matter L (gradient) Sat Wa 原子核のくろたま模型 symmetric nuclear matter So ►n (density) 0 n_{α} a Wo K_a (curvature) 中性子星クラスト中での 原子核反応断面積公式 PHITSへの組み込み パスタ原子核の存在領域 target DL, hits to a target nucleus r0 а proton and fragments are produced

Ref. Tews, Lattimer, Ohnishi, & Kolomeitsev, arXiv:1611.07133.

Compressible liquid-drop model

 $E_{\rm Coul} = \frac{3Z^2 e^2}{5R_{\rm p}}$

Semi-empirical mass formula:
$$-E_{\rm B} = E_{\rm vol} + E_{\rm sur} + E_{\rm Coul}$$

For a spherical nucleus $(R_{\rm p} \approx R_{\rm n})$,
 $E_{\rm vol} = Aw(n_{\rm in}, \delta_{\rm in})$
 $w(n, \delta) \xrightarrow{\delta \approx 0, n \approx n_0} w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + \left[S_0 + \frac{L}{3n_0}(n - n_0)\right]\delta^2$
 $(n_0) w_0 \approx 0.14 \cdot 0.17 \,{\rm fm}^{-3}, -16 \,{\rm MeV}$ saturation point of symmetric nuclear matter
 $S_0 \approx 25 \cdot 40 \,{\rm MeV}$ symmetry energy coefficient
 $K_0 \approx 180 \cdot 360 \,{\rm MeV}$ incompressibility
 $L \approx 0.200 \,{\rm MeV}$ density symmetry coefficient
 $E_{\rm sur} = 4\pi\sigma(n_{\rm in}, \delta_{\rm in})R_{\rm p}^2$
 $\sigma(n, \delta) \xrightarrow{\delta \approx 0, n \approx n_0} \rightarrow \sigma_0 \left[1 - C_{\rm sym}\delta^2 + \chi\left(\frac{n - n_0}{n_0}\right)\right]$
 $\sigma_0 \approx 1 \,{\rm MeV} \,{\rm fm}^{-2}$ surface tension at $\delta = 0$ and $n = n_0$
 $C_{\rm sym} \approx 1.5 \cdot 2.5$ surface symmetry energy coefficient

 $\chi=0$ Myers & Swiatecki (1969) $\chi\approx1/2$ Yamada (1964) $\chi=4/3$ Fermi-gas model

Nucleon density in the nuclear interior

Pressure equilibrium:
$$\delta E_{\rm B}|_{A, Z} = 0$$
, i.e., $P_{\rm vol} + P_{\rm sur} + P_{\rm Coul} = 0$

$$\begin{aligned} P_{\text{vol}} &\approx \frac{K_0}{9} (n_{\text{in}} - n_0) + \frac{L}{3} n_0 \delta_{\text{in}}^2 \equiv \frac{K_0}{9} (n_{\text{in}} - n_s) \\ & w(n, \delta) \xrightarrow{\delta \approx 0, n \approx n_0} \to w_0 + \frac{K_0}{18n_0^2} (n - n_0)^2 + \left[S_0 + \frac{L}{3n_0} (n - n_0) \right] \delta^2 \\ P_{\text{sur}} &\approx -\frac{2\sigma_0}{R_p} \left(1 - \frac{3}{2} \chi \right) = 0 \quad \text{at} \quad \chi = 2/3 \quad ! \\ & \sigma(n, \delta) \xrightarrow{\delta \approx 0, n \approx n_0} \to \sigma_0 \left[1 - C_{\text{sym}} \delta^2 + \chi \left(\frac{n - n_0}{n_0} \right) \right] \\ P_{\text{Coul}} &= \frac{Z^2 e^2}{5 V R_p}, \quad V = A n_{\text{in}}^{-1} \end{aligned}$$

Saturation density of uniform matter at neutron excess δ_{in} :

$$n_{\rm s} = n_0 - \frac{3n_0L}{K_0}\delta_{\rm in}^2 \quad (\leftarrow P_{\rm vol} = 0)$$

Density difference:

$$\Delta n \equiv n_{\rm in} - n_{\rm s} \approx -\frac{9}{K_0} (P_{\rm sur} + P_{\rm Coul}) \sim 0.1 n_0 \quad \text{for } \chi = 0$$
$$\sim -0.1 n_0 \quad \text{for } \chi = 4/3$$

Neutron skin thickness

— a quantity useful for deduction of the value of χ

Thermodynamic description of the nuclear surface

Ref. Pethick & Ravenhall, NPA 606(1996)173.

Neutron skin thickness (contd.)

Poorly known

Coulomb effects Ref. Myers & Swiatecki, NPA 336(1980)267.

 \cdot Reduction of the neutron-skin driving force

$$R_{n} - R_{p} \propto \frac{N - Z}{A} \implies R_{n} - R_{p} \propto \frac{N - Z}{A} \underbrace{Ze^{2}}_{20R_{p}S_{0}}$$
proton skin at $N = Z$

• Polarization of the nuclear interior
$$R_{n} - R_{p} \implies R_{n} - R_{p} - \frac{Ze^{2}}{70S_{0}}$$

$$n_{n} = \frac{n_{n}}{n_{p}} \underbrace{R_{p}R_{n}}_{R_{p}R_{n}} r$$
bundly

Eventually,

$$R_{\rm n} - R_{\rm p} \approx C \left(\frac{N - Z}{A} - \frac{Ze^2}{20R_{\rm p}S_0} \right) \left(1 + \frac{3C}{2R_{\rm p}} \right)^{-1} - \frac{Ze^2}{70S_0}, C \equiv \frac{2\sigma_0}{S_0 n_0} \left(C_{\rm sym} + \frac{3L\chi}{K_0} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} \left(C_{\rm sym} + \frac{3L\chi}{K_0} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} \left(C_{\rm sym} + \frac{3L\chi}{K_0} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} \left(C_{\rm sym} + \frac{3L\chi}{K_0} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} = \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} \left(C_{\rm sym} + \frac{3L\chi}{K_0} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} = \frac{1}{2C} \left(C_{\rm sym} + \frac{3L\chi}{K_0} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} \right)^{-1} - \frac{2C}{1 + \frac{3C}{2R_{\rm p}}} = \frac{1}{2C} \left(C_{\rm sym} + \frac{3L\chi}{K_0} \right)^{-1} - \frac{1}{2C} \left(C_{\rm sym} + \frac{1}{2C} \left(C_{\rm sym} + \frac{1}{2C} \right)^{-1} - \frac{1}{2C} \left(C_{\rm$$

Cf. The diffuseness correction is ignored.

Diffuseness correction to neutron skin thickness

with

$$b_q^2 = \frac{2\int_{c_q}^{\infty} (r - c_q)^2 [(r - c_q)^2 + c_q^2] \rho_q'(r) dr}{\int_0^{\infty} r^2 \rho_q'(r) dr}$$

$$c_q = \frac{4\pi \int_0^\infty r^3 \rho_q'(r) dr}{4\pi \int_0^\infty r^2 \rho_q'(r) dr}$$

 $\Delta r_{np}^{\rm surf} \simeq \sqrt{\frac{3}{5} \frac{5}{2R}} (b_n^2 - b_p^2)$

Ref. Horiuchi, Ebata, & Iida, PRC 96 (2017) 035804.

Why the EOS dependence of neutron skin thickness is so elusive?

Only *C* is empirically determined as ~ 1.06 .

The diffuseness correction is of the order of the liquid-drop contribution. Ref. Horiuchi, Ebata, & Iida, PRC **96** (2017) 035804.

