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Compound Nucleus Scattering

238U 239U 238U

n

n

Compound Nucleus

� Formation and decay of a compound nuclear are independent.

� Because the system is chaotic, all information on its formation get

lost.
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Bohr’s Billiard

Bohr, Nature 1934
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Compound Nucleus Cross Section

� Hauser-Feshbach formula:

σ =
Ti Tf
∑

k Tk

with Tk the transmission coefficient for channel k defined by

Tk = 1− |Skk|2 .

� To some extent, a compound nucleus has no hair, as is the case

for a black hole.

� Most likely a compound nucleus saturates the quantum bound on

chaos obtained recently by Maldacena, Shenkar and Stanford.

Black holes are believe to saturate this bound as well.
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Quantum Hair of a Compound Nucleus

Total cross section versus energy (in eV ).

Garg-Rainwater-Petersen-Havens,1964
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Nuclear Data Ensemble

S

P(S)

Nearest neighbor spacing distribution of an ensemble of different

nuclei normalized to the same average level spacing.

Bohigas-Haq-Pandey, 1983
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Random Matrix Theory

H T A P (H)

Hamiltonian
Anti-Unitary

Symmetry

Anti-

Commutator

Symmetry

Probability

Distribution

Example: Time reversal invariant system,

Tψ = ψ∗ (T 2 = 1)

H∗ = H , P (H) = e−NTrH†H

N ×N matrix

0

00

0

00

H =
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Wigner Semi-Circle

If the matrix elements are independent and have the same distribution,

the eigenvalues are distributed according to as semi-circle in the limit

of very large matrices
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This is the case for a wide range of probability distributions which for

convenience is usually taken to be a Gaussian, and a semicircular

eigenvalue distribution is found for all 10 classes of random matrices.
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Motivation for the Two-Body Random Ensemble

� The nuclear level density

behaves as eα
√
E .

� The nuclear interaction is

mainly a two-body

interaction.

� Random matrix theory de-

scribes the level spacings,

but it is and N -body interac-

tion with a semicircular level

density.
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Two Body Random Ensemble

H =
∑

αβγδ

Wαβγδa
†
αa

†
βaγaδ.

The labels of the fermionic creation and annihilation operators run over

N single particle states. The Hilbert space is given by all many particle

states containing m particles with m = 0, 1, · · · , N .

The dimension of the Hilbert space is:
∑

(

N
m

)

= 2N .

� Wαβγδ is Gaussian random.

� The Hamiltonian is particle number conserving.

� The matrix elements of the Hamiltonian are strongly correlated.
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The Sachdev-Ye-Kitaev (SYK) Model

The two-body random ensemble from nuclear physics also has

become known as the SYK model. However, being familiar with the

history, we will only reserve this name for the two-body random

ensemble with Majorana fermions Sachdev-Ye-1993,Kitaev-2015

H =
∑

α<β<γ<δ

Wαβγδχαχβχγχδ.

The fermion operators satisfy the commutation relations

{χα, χβ} = δαβ ,

nd can be represented by γ -matrices.

The two-body matrix elements are taken to be Gaussian distributed.
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Spectrum and Partition Function

The partition function of N fermions with Hamiltonian H is given by

Z(β) = Tre−βH =

∫

dEρ(E)e−βE .

The spectral density is thus given by the Laplace transform of the

partition function.

ρ(E) =

∫ r+i∞

r−i∞
eβEZ(β) =

∫ r+i∞

r−i∞
eβEe−βNE0+S+ c

2β

Doing a saddle point approximation one obtains

ρ(E) =

(

1

2c

)1/4
1

(E − E0)3/4
e
√

2c(E−E0).

This is the Bethe formula for the nuclear level density. Bethe-1936
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Nearest Neigbor Spacing Distribution
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Garcia-Garcia-JV-2016

This model saturates the quantum bound on chaos. Kitaev-2015,

Maldacena-Shenker-Stanford-2015.

This is also the case for black holes which explains the current interest

in the SYK model.

Cotler-Hanada-Polchinsky-Saad-Shenkar-Stanford-Streicher-Tezuka-2016
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Random Matrix Behavior of Spectra

� Level repulsion

� Spectral rigidity: the variance of the number of eigenvalues in an

interval containing n eigenvalues on average behaves as log n .

� Eigenvalues of a random matrix behave as a Wigner crystal.
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Chiral Random Matrix Theory

Motivation

Chiral Random Matrix Theory

Banks-Casher Formula

Chiral Symmetry Breaking
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Random Matrix Theory in QCD

� What we learned from this is that if a system is chaotic, even

weakly chaotic, the eigenvalues of the corresponding quantum

system are behave according to random matrix theory.

�

The remarkable thing is that the micro-

scopic theory for QCD in chaotic as well.

If we interpret the Lagrangian of the Eu-

clidean field theory as the Hamiltonian in

4+1 dimensions, the quarks move in a

“random” gauge potential which is neces-

sarily chaotic.

a quark

Aµ(x)

motion of

� Therefore, the eigenvalues of the corresponding Dirac operator are

correlated according to random matrix theory.

� This has been confirmed by numerous lattice simulations
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Flavor Topology Duality

chRMT prediction:

In the chiral limit, the average

position of the small Dirac

eigenvalues only depends on

the combination Nf +Q.

JV-2000

P (λ) ∼ λ2Nf λ2Q+1

fermion
determinant

Jacobian
Dkl → λk

CERN COURIER, June 2007

Lattice simulations: Fukaya-et al-2007, Giusti-Lüscher-Weisz-Wittig-2003
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QCD Dirac Spectra

� The Dirac eigenvalues show level

repulsion and spectral rigidity

which characterize random matrix

theory.

� In other words, the Dirac

eigenvalues behave as a Wigner

crystal.

� There can be no gap in the Dirac

spectrum around zero, or

anywhere else in the spectrum.

� According to the Banks-Casher

formula, this implies spontaneous

breaking of chiral symmetry.

Zero Modes

λ

V Σ
π

∼ V λ3

ρ(   )λ
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Banks-Casher Formula

Σ = −〈ψ̄ψ〉 = 1

V

d

dm
logZ

=

〈

1

V

∑

k

1

iλk +m

〉

=
1

V

∫

dλ
ρ(λ)

iλ+m
=

1

V

∫

dλ
ρ(λ)m

λ2 +m2

For m→ 0 we find

Σ =
πρ(0)

V
.

RMT, KEK 2017 – p. 23/41



Random Matrix Theory for QCD

Zν(m,µ) =

∫

dW det(D +m)e−nΣ2TrW †W

with random matrix Dirac operator JV-Shuryak-1991, JV-1994

D =





0 iW + µ

iW † + µ 0



 ,

where µ can be arbitrary complex and W is an n× (n+ ν) matrix.

The model has one parameter, Σ , which is the chiral condensate.

� Imaginary chemical potential Jackon-JV-1994

Schäfer-Weidenmüller-Wettig-1994

� Real chemical potential Stephanov-1996
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Chiral Symmetry Breaking

� In all cases we know of the pattern of spontaneous symmetry

breaking of QCD or the QCD like theory is the same as the

corresponding random matrix theory.

� This is a highly nontrivial result becuase the chiral condensate

arises as a consequence of non-perturbative QCD dynamics.

� One of the reasons for this equavalence is the relation between the

order parameter and the Dirac spectrum

〈ψ̄aψa〉 =
1

V

∑

k

1

iλk +ma

� So the condensate is flavor independent and an SU(Nf )

subgroup of the flavor group cannot be broken. We can only break

the symmetry to the full axial group.
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Chiral Lagrangian

At a more technical level QCD at low energy is given by a weakly

interacting gas of pions.

If the Compton wave length is much larger than the size of the box, we

can neglect the kinetic term and the QCD partition function is given by

Z(M) =

∫

U∈SU(Nf )

dUeTr(M
†U+MU†)

This partition function is identical to the random matrix partition

function in the limit of large matrices.
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Validity of Random Matrix Theory

Random matrix theory is valid for Osborn-JV-1996

1

mπ
≫ L or

F 2
π

2mΣ
≫

√
V

In terms of the quark mass

m≪ F 2
π

2Σ
√
V
.

The same argument can be applied to the eigevalues of the Dirac

operator. Since

λmin =
1

ρ(0)
=

π

ΣV
,

we always have a large number of Dirac eigenvalues described by

RMT.
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QCD at Nonzero Chemical Potential

QCD at Nonzero Chemical Potential

Silver Blaze Problem

The Complex Langevin Algorithm
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QCD at nonzero chemical potential

� QCD at nonzero chemical potential

remains chaotic.

� The Dirac operator becomes

non-hermitian

� Therefore the eigenvalues of the

Dirac operator behave as random

matrix eigenvalues, i.e. as a

two-dimensional Wigner crystal.

� The eigenvalue density has no holes.

� Because it is two-dimensional, it is

more interesting.

Dirac eigenvalues with

Re(λ)> 0 on a 43 × 8

lattice.

Barbour-Bhilil-Dagotto-

Karsch-Moreo-Stone-Wyld-

1986
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Sign Problem for µ 6= 0

Because the Dirac operator at nonzero µ is nonhermitean, the fermion

determinant is complex

det(D + µγ0 +m) = eiθ| det(D + µγ0 +m)|.

The fundamental problem is that the average phase factor may vanish

in the thermodynamic limit, so that Monte-Carlo simulations are not

possible (sign problem).

The severity of the sign problem can be measured by the ratio

〈e2iθ〉1+1∗ ≡ 〈det2(D +m+ µγ0)〉
〈| det(D +m+ µγ0)|2〉

∼ e−V (FNf=2−Fpq).

full QCD

partition function

phase quenched

partition function

Splittorff-JV-2006
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Phase Quenched Theory

Z(m,µ) = 〈| det(D + µγ0)|2〉 = 〈det(D + µγ0) det(D − µγ0)〉

This is QCD at nonzero isospin chemical potential. Pion condensation

occurs for µ > mπ/2 . Alford-Kapustin-Wilczek-1999

At this point, the quark mass hits the cloud of

eigenvalues Toublan-JV-2000

µ2 =
1

4
m2

π =
mΣ

2F 2
,

Width of the cloud of eigenvalues

2µ2F 2

Σ
.

m
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Silver Blaze Problem

� For full QCD the eigenvalue distribution for each gauge field

configuration is the same as that of quenched or phase quenched

QCD.

� At low temperature, the contribution of the nucleons to the partition

function can be ignored, so that the partition function does not

depend on the baryon number chemical potential.

� Yet at µ = mπ/2 , the quark mass hits the cloud of eigenvalues but

the chiral condensate remains constant until m = 0 .

� Apparently, the transition to the pion condensed phase is nullified

by the phase of the fermion determinant.

� The puzzle of how this can happen is know as the Silver Blaze

problem. Cohen
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Dirac Spectrum and Chiral Condensate

quark mass m
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Scatter plot of Dirac eigenvalues

mc

condensate

Chiral condensate
in full QCD

Support of spectrum

Quenched chiral

Σ(m) = 1
V

∑

k
1

m+iλk

m

Σ(m)

� The support of the Dirac spectrum does not depend on the

complex phase of the determinant.

� Exponential cancellations can wipe out the critical point and reveal

a completely different physical system. This is the case of QCD at

nonzero baryon density.
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Solution of the Silver Blaze Problem

� Since the phase quenched partition function is exponentially larger

(in the volume) than the full QCD partion function, it requires

exponential cancellations to nullify the pion condensed phase.

� It was explained in terms of a random matrix theory at nonzero

chemical potential.

� The discontinuity of the chiral condensate at m = 0 can be

obtained from a strongly oscillating spectral density with a period

∼ 1/V and an amplitude that grows exponentially with the volume.

� This is a generic mechanism that occurs in nonhermitian theories

with a sign problem including QCD at nonzero θ -angle.

Osborn-Splittorff-JV-2006,Ravagli-JV-2007,Kanazawa-Wettig-

2013,Wettig-JV-2014,Wettig-JV-Kieburg-2017
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Analyticity

� Another way to get a µ-independent chiral condensate would be if

the theory is equivalent to a theory at zero chemical potential.

� If the integrand of the partition function is an analytical function of

the gauge fields, it could be possible that we can deform the

integration contour to a field configuration with eigenvalues of the

Dirac operator on the imaginary axis.

� In the complex Langevin algorithm gauge fields are complexified

which is justified if if the integrand is analytic in the gauge fields.

� When the quark mass is inside the cloud of the integrand of the

partition function is not an analytical function of the gauge fields.
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The BBKSV Model

Z(m,µ) =

∫

dΦdet





m eµΦ1 − e−µΦ†
2

−e−µΦ†
1 + eµΦ2 m



 e−2nΣ2Tr(Φ1Φ
†
1
+Φ2Φ

†
2
),

where Φ1 and Φ2 are complex n× n matrices.

Bloch-Brückmann-Kieburg-Splittorff-JV-2013

For small µ this model reduces to the Osborn model Osborn-2004

The Gaussian integral is only nonzero for terms that have an equal

number of factors Φi and Φ†
i for i = 1, 2 so that the partition function

does not depend on µ .

� Z(m,µ) = Z(m, 0) .

� Z(m,µ+ πi/2) = Z(m,µ) .
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Testing the Complex Langevin Algorithm

Test of the complex Langevin algorithm for the BBKSV Model

Nagata-Nishimura-Shimasaki-2016

Complex Langevin works after “gauge cooling” adapted for random

matrix theory.
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Random Matrix Model with Phase Transition

One major drawback of the BBKSV model is that it has no phase

transition contrary to the D + µγ0 model. This model can be solved

analytically, and for m = 0 , the solution is particularly simple,

Halasz-Jackson-JV-1998

Zν(m,µ) =

∫ ∞

0

dssν+1Iν(2mnsΣ)(s
2 − µ2)ne−nΣ2(s2−µ2+m2).

This expression is an analytic function of µ ∈ C .

D =





0 iW + µ1

iW † + µ1 0



 .

Can the complex Langevin algorithm repro-

duce this phase diagram?
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Complex Langevin Simulation
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Bloch-Glesaaen-Philipsen-JV-Zafeiropouos-2016

The baryon number (left) and the chiral condensate (right) as a

function of the chemical potential for m = 0.2 .

The complex Langevin algorithm converges to the phase quenched

result. The reason is that the Complex Langevin method is

probabilistic.
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Why do Random Matrix Models Work?

� The random matrix theory has the global symmetries of QCD.

� The pattern of spontaneous symmetry breaking is the same as in

QCD.

� In microscopic limit,

mV = fixed, λV = fixed, µ2V = fixed for V → ∞

the above random matrix theories coincide with QCD.

� More precisely, in this limit random matrix theory coincides with the

ǫ-domain of chiral perturbation theory.

� The mean field limit of the chiral Lagrangian in the p-counting

scheme coincides with the ǫ -limit of QCD.
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IV. Conclusions

� Chaos pervades determines the fundamental properties of both

nuclear physics and QCD.

RMT, KEK 2017 – p. 41/41



IV. Conclusions

� Chaos pervades determines the fundamental properties of both

nuclear physics and QCD.

� A compound nucleas saturates the quantum bound on chaos and

behaves like a black hole.

RMT, KEK 2017 – p. 41/41



IV. Conclusions

� Chaos pervades determines the fundamental properties of both

nuclear physics and QCD.

� A compound nucleas saturates the quantum bound on chaos and

behaves like a black hole.

� It is one of the great triumphs of Random Matrix Theory that it can

describe the low-energy limit of a fundamental quantum field

theory.

RMT, KEK 2017 – p. 41/41



IV. Conclusions

� Chaos pervades determines the fundamental properties of both

nuclear physics and QCD.

� A compound nucleas saturates the quantum bound on chaos and

behaves like a black hole.

� It is one of the great triumphs of Random Matrix Theory that it can

describe the low-energy limit of a fundamental quantum field

theory.

� Random Matrix theory has contributed greatly to our

understanding of the QCD partition function at nonzero chemical

potential and the spectral properties of the nonhermitian Dirac

operator.

RMT, KEK 2017 – p. 41/41



IV. Conclusions

� Chaos pervades determines the fundamental properties of both

nuclear physics and QCD.

� A compound nucleas saturates the quantum bound on chaos and

behaves like a black hole.

� It is one of the great triumphs of Random Matrix Theory that it can

describe the low-energy limit of a fundamental quantum field

theory.

� Random Matrix theory has contributed greatly to our

understanding of the QCD partition function at nonzero chemical

potential and the spectral properties of the nonhermitian Dirac

operator.

� Without random matrix theory the cancellation mechanism that

leads to the Silver Blaze property of the chiral condensate could

not have been understood.
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