Light-hadron spectroscopy with two-photon and other processes at Belle

Sadaharu Uehara (KEK) Belle Collaboration

KEK theory center workshop on Hadron and Nuclear Physics in 2017 (KEK-HN-2017) Jan. 7 – 10, 2017

Resonance production and quantum numbers

Resonance formation from two photon collisions

e[−] Resonance _{γ*} Hadrons e⁺ _{γ*}

Q = 0, C = +, for real-photon collisions $J^{P}= 0^{+}, 0^{-}, 2^{+}, 2^{-}, 3^{+}, 4^{+}, 4^{-}, 5^{+} \dots$ (even)[±], (odd \neq 1)⁺

Pseudoscalar-meson pair production: J^P=(even)⁺ only

Strict constraints for quantum numbers \rightarrow **Determination of J**^P **by PWA** $\Gamma\gamma\gamma$: The cross section is proportional to the two-photon partial decay width of the resonance, useful information to explore **meson's internal structure**

Decay properties of the resonance Searches/Discoveries of **new resonances** Isospin mixing, **Form factors**, **Test of QCD**

KEKB Accelerator and Belle Detector

- Asymmetric e⁻ e⁺ collider 8 GeV e⁻ (HER) x 3.5 GeV e⁺ (LER)
 √s= around 10.58 GeV ⇔ Υ(4S)
 Beam crossing angle: 22mrad
- World-highest Luminosity L_{max}=2.1x10³⁴ cm⁻²s⁻¹

 \int Ldt \sim 1040 fb⁻¹ (Completed in Jun.2010)

High momentum/energy resolutions CDC+Solenoid, Csl Vertex measurement – Si strips Particle identification TOF, Aerogel, CDC-dE/dx, RPC for K_L/muon S.Uehara, KEK, Jan. 2017

" $\gamma\gamma \rightarrow$ Pseudoscalar-meson pair" from Belle

10 papers for 6 processes

Process	Reference BELLE	Int.Lum. (fb ⁻¹)	γγ c.m. Energy (GeV)	Light Mesons	QCD	Char- monia
$\pi^+\pi^-$	PLB 615, 39 (2005) PRD 75, 051101(R) (2007) J. Phys. Soc. Jpn. 76, 074102 (2007)	87.7 85.9 85.9	2.4 - 4.1 0.8 - 1.5 0.8 - 1.5	$\sqrt{1}$	\checkmark	\checkmark
K^+K^-	EPJC 32, 323 (2003) PLB 615, 39 (2005)	67 87.7	1.4 - 2.4 2.4 - 4.1	\checkmark	\checkmark	\checkmark
$\pi^0\pi^0$	PRD 78, 052004 (2008) PRD 79, 052009 (2009)	95 223	0.6 - 4.0 0.6 - 4.0	$\sqrt[n]{}$	\checkmark	\checkmark
$K^0_{\ S}K^0_{\ S}$	PLB 651, 15 (2007) PTEP 2013, 123C01 (2013)	397.1 972	2.4 - 4.0 1.05 - 4.0	\checkmark	$\sqrt[]{}$	$\sqrt[n]{\sqrt{1}}$
$\eta\pi^0$	PRD 80, 032001 (2009)	223	0.84 - 4.0	\checkmark	\checkmark	
ηη	PRD 82, 114031 (2010)	393	1.1 – 3.8	\checkmark	\checkmark	\checkmark

Differential cross section $d\sigma/d \cos \theta^*$ for these processes are measured.

S.Uehara, KEK, Jan. 2017 4

The six processes; in total ~20 peaks

Formalism of PWA for P-meson pair final-state processes

• We consider up to J=4 (for W < 3 GeV).

$$\frac{d\sigma}{d\Omega} = \left| SY_0^0 + D_0Y_2^0 + G_0Y_4^0 \right|^2 + \left| D_2Y_2^2 + G_2Y_4^2 \right|^2$$

• S, D_0 , G_0 , D_2 , G_2 Partial-wave amplitudes for each wave J_λ

J = L = 0, 2, 4 (even only) with the helicity $\lambda = 0$ or 2 (to the $\gamma\gamma$ axis)

- Y_J^{λ} : spherical harmonics
- $|Y_J^{\lambda}|$ are NOT mutually independent, as we have no information for the azimuthal-angle direction.
- We cannot determine the partial waves model independently;
 We need parameterization based on a model including the W dependence of resonances and continuum components.
- Ancillary model-independent way: Hat amplitudes; $|Y_J^m|^2$ mutually independent

$$\frac{d\sigma}{d\Omega} = \hat{S}^2 \left| Y_0^0 \right|^2 + \hat{D}_0^2 \left| Y_2^0 \right|^2 + \hat{G}_0^2 \left| Y_4^0 \right|^2 + \hat{D}_2^2 \left| Y_2^2 \right|^2 + \hat{G}_2^2 \left| Y_4^2 \right|^2$$

Confirmations of $f_0(980)$ and $a_0(980)$ formations

Two-photon decay width of $f_0(980)$ and $a_0(980)$

0000

S.Uehara, KEK, Jan. 2017

The tensor-meson triplet, $f_2(1270)$, $a_2(1320)$, $f_2'(1525)$

 $f_2(1270)$ - $a_2(1320)$ interference in KK

Scalars in the 1.2 – 1.6 GeV region

- Hadron experiments report a wide $f_0(1370)$ and a narrow $f_0(1500)$.
- Some of previous two-photon measurements provide a hint of $f_0(1100-1400) \rightarrow \pi\pi$ under the huge peak of $f_2(1270)$
- Belle's $\pi^0 \pi^0$ measurement reports $f_0(1470)$. May be visible in the line shape.
 - → favorable to the narrow $f_0(1500)$, but also consistent with $f_0(1370)$.

f ₀ (1370) ^[j]	$I^G(J^{PC})=0$	+(0 + +)		
Mass $m = 1200$ t Full width $\Gamma = 20$	Mass $m = 1200$ to 1500 MeV Full width $\Gamma = 200$ to 500 MeV			
f0(1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)		
ππ	seen	672		
f ₀ (1500) ^[n]	$I^{G}(J^{PC}) = 0^{+}$	+(0 + +)		
$f_0(1500)$ [n] Mass $m = 1505 \pm$ Full width $\Gamma = 109$	$I^{G}(J^{PC}) = 0^{4}$: 6 MeV (S = 1.3) 9 ± 7 MeV	+(0 + +)		
$f_0(1500)$ [<i>n</i>] Mass $m = 1505 \pm$ Full width $\Gamma = 109$ $f_0(1500)$ DECAY MODES	$I^{G}(J^{PC}) = 0^{4}$: 6 MeV (S = 1.3) 9 \pm 7 MeV Fraction (Γ_{i}/Γ)	+ (0 + +) Scale factor (MeV/c)		

1.6 – 1.8 GeV: Mass region of the greatest difficulty

- $a_2(1700) \rightarrow \rho^0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$ is confirmed by previous two-photon measurements.
- $a_2(1700) \rightarrow \eta \pi^0$ seen in our data, but no definite parameters obtained.
- $f_2(1810) \rightarrow \eta \eta$ is confirmed in two-photon process.
- An unidentified structure around ~1.6 GeV is seen in $\pi^0\pi^0$. But, its correspondence to a single resonance of the mass is not sure.

1.4 W (GeV)

 $f_0(1710)$ formation in $K^0_S K^0_S$

 $f_0(1710) \rightarrow K_S^0 K_S^0$ is confirmed in two-photon process.

ara, KEK, Jan. 2017

The 1.8 – 2.2 GeV region

- $f_2(1950) \rightarrow \pi^0 \pi^0$ shows a broad structure
- Similar structure exists in K⁺K⁻ (but, they can be different states)
- No peak in $\eta \pi^0$, $\eta \eta$ and $K^0_{\ S} K^0_{\ S}$ in this mass region

J=2 and J=4 components in $\pi^0\pi^0$

S.Uehara, KEK, Jan. 2017

The 2.2 – 2.6 GeV region

- The very narrow $f_1(2220)$ (was $\xi(2220)$) and a wide $f_2(2300)$ are suggested. Do the both exist? Really narrow?
- Our $\pi^0\pi^0$ result does not need $f(\sim 2300)$; the high mass $f_2(1950)$ can explain the observed line shape.
- Surely something narrow(?) peaks are found in K⁺K⁻, K⁰, K⁰, and $\eta\eta$.

An **ss** state or a glueball flavor insensible?

|cos θ*|<0.6

10

 $f_2(2200)$ - $f_0(2500)$ is the best solution (in all the J= 0, 2, 4 combinations)

- There can be an only wide state around 2240 MeV.
- Narrow appearances in previous measurements may be due to an interference effect and/or statistical fluctuation.
- A high-mass state at 2.5 GeV may be the heaviest light-quark scalar meson so far found.

" $\gamma\gamma \rightarrow$ Vector-meson pair" from Belle

Observation of New Resonant Structures in $\gamma\gamma \rightarrow \omega\phi$, $\phi\phi$, and $\omega\omega$

 $\gamma\gamma \rightarrow \eta'\pi^+\pi^-$

Production of light-quark mesons decaying to the **three pseudoscalar meson final state**. (The η_c production is also presented.)

Belle, PRD 86, 052002 (2012)

X(1835) is an exotic resonance candidate found in the radiative decay of J/ψ by BES. Is it gluon-rich, or $q\bar{q}$ -rich?

S.Uehara, KEK, Jan. 2017

Exotic in ss sector ?; (ISR) $e^+e^- \rightarrow Y(2175) \rightarrow \phi \pi^+ \pi^-$

$\rho(1700)$ in $\tau^- \rightarrow \pi^- \pi^0 \nu$ Decay

PRD 78, 072006 (2008)

From 64M $\tau^+\tau^-$ pairs, Belle

selects 5.5M $\tau \rightarrow \pi^- \pi^0 v_{\tau}$ events!

Error bars include both statistical

and systematic

Interference between ρ ' and ρ "

Fit with BW

Fit parameter	Norm fixed
Norm $\left \mathbf{F}_{_{\pi}}(0) \right ^2$	[1.0]
M _o (MeV)	774.6±0.2±0.5
Γ ₀ (MeV)	148.1±0.4±1.7
$\dot{M_{\rho'}}$ (MeV)	1446±7±28
$\Gamma_{ ho'}$ (MeV)	434±16±60
$ oldsymbol{eta} $	$0.15 \pm 0.05 \pm ^{0.15}_{0.04}$
$\phi_{\scriptscriptstyle eta}$ (degree)	$202 \pm 4 \pm ^{41}_{8}$
<i>M_{o"}</i> (MeV)	1728±17±89
$\Gamma_{\rho''}$ (MeV)	$164 \pm 21 \pm \frac{89}{26}$
$ \gamma $	$0.028 \pm 0.020 \pm ^{0.059}_{0.009}$
ϕ_{γ} (degree)	$24 \pm 9 \pm ^{118}_{28}$
χ^2 /d.o.f	80/52
S.Uehara	, KEK, Jan. 2017 21

$\gamma * \gamma \rightarrow \pi^0 \pi^0 : f_0$ (980) and f_2 (1270) TFF's

TFF: Transition Form Factor

Physics motivations:

- Q² dependence of TFF for scalar and tensor mesons (This is the first measurement)
- Test of QCD of $q\bar{q}$ meson model

- Light-by-Light – hadronic contribution for g-2| $_{\mu}$

PRD 93, 032003 (2016)

Formalism of PWA

$$|F(Q^2)| = \sqrt{\frac{\sigma_R^{\lambda}(Q^2)}{\sigma_R(0)(1 + \frac{Q^2}{M^2})}}$$

$$\frac{d\sigma(\gamma^*\gamma \to \pi^0\pi^0)}{d\Omega} = \sum_{n=0}^2 t_n \cos(n\varphi^*),$$

$$t_0 = |M_{++}|^2 + |M_{+-}|^2 + 2\epsilon_0 |M_{0+}|^2,$$

$$t_1 = 2\epsilon_1 \Re \left((M_{+-}^* - M_{++}^*)M_{0+} \right),$$

 $t_2 = -2\epsilon_0 \Re(M_{+-}^* M_{++}),$

++ etc. --- Helicity state of the incident photons

- S, D₀ etc. -- Partial-wave amplitude in $\pi^0\pi^0$ scattering
- *B*, *A*_f -- Background and *f*-resonance components.
- ϵ_0, ϵ_1 --- A spin-dependent flux factor ratio for the virtual-photons

TFF is defined for each resonance R produced with each helicity $\boldsymbol{\lambda}$

To obtain the resonance amplitudes: Perform PWA, parameterizing W dependence of the resonance and continuum components of each helicity amplitude, e.g.,

$$M_{++} = S + D_0,$$

$$S = B_S(W) + A_{f0}(W)$$

$$D_0 = 4\pi [B_{D0}(W) + A_{f2}(W)\sqrt{r_{20}}] Y_2^0$$

etc.

Determine each component as well as the relative phase by a fit

Cross-section results and fit

Q² dependence of resonant amplitudes

Theoretical predictions:

Schuler, Berends, van Gulik, a heavy quark approx. NPB 523, 423 (1998)

000

Pascalutes, Pauk, Vanderhaeghen, saturated sum rule, PRD 85, 116001 (2012), η 's

ibid., axial-vector mesons

Summary

- $\gamma\gamma \rightarrow$ pseudoscalar-meson pair have been measured in six different final states. Measure $\Gamma\gamma\gamma(\times BF)$ for various J^{PC}=(even)⁺⁺ mesons
- The γγ-invariant-mass region, 0.6 2.6 GeV, is studied for light-meson spectroscopy.
- We have confirmed:
 - $\gamma\gamma$ coupling of the scalar mesons $f_0(980)$, $a_0(980)$, $f_0(1710)$
 - f a interference in the K \overline{K} final states
 - Many clear resonant structures found in 1.6 2.6 GeV regions.
- Resonant signals in the 1.6 2.6GeV region are also found in the VV and $\eta' \pi \pi$ final states.
- Other topics: Y(2175), $\rho(1700)$, TFFs for $f_0(980)$ and $f_2(1270)$.

Backup

W-dependences at high energies

Cross sections and their ratios

Process	п	W(GeV)	$ \cos \theta^* $	BL	BC	DKV
$K^0_S K^0_S$	$11.0 \pm 0.4 \pm 0.4$	2.4 - 4.0 [†]	< 0.8		10	
$\pi^+\pi^-$	$7.9 \pm 0.4 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
K^+K^-	$7.3 \pm 0.3 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
$\pi^0\pi^0$	$8.0\pm0.5\pm0.4$	3.1 - 4.1 [†]	< 0.8		10	
$\eta \pi^0$	$10.5 \pm 1.2 \pm 0.5$	3.1 - 4.1	< 0.8		10	
$\eta\eta$	$7.8\pm0.6\pm0.4$	2.4 – 3.3	< 0.8		10	
Process	σ_0 ratio	W(GeV)	$ \cos heta^* $	BL	BC	DKV
$K^{+}K^{-}/\pi^{+}\pi^{-}$	$0.89 \pm 0.04 \pm 0.15$	3.0 - 4.1	< 0.6	2.3	1.06	
K _S K _S /K ⁺ K ⁻	\sim 0.10 to \sim 0.03	2.4 - 4.0	< 0.6		0.005	2/25
$\pi^{0}\pi^{0}/\pi^{+}\pi^{-}$	$0.32 \pm 0.03 \pm 0.06$	3.1 - 4.1	< 0.6		0.04-0.07	0.5
$\eta \pi^0 / \pi^0 \pi^0$	$0.48 \pm 0.05 \pm 0.04$	3.1 - 4.0	< 0.8	$0.24R_f(0.46R_f)^{\ddagger}$		
$\eta\eta/\pi^0\pi^0$	$0.37 \pm 0.02 \pm 0.03$	2.4 - 3.3	< 0.8	$0.36R_f^2(0.62R_f^2)^{\ddagger}$		

† Exclude χ_{cJ} region, 3.3 - 3.6 GeV.

Assuming η is a member of SU(3) octet (superposition of octet and singlet with mixing angle of $\theta_p = -18^\circ$). R_f is a ratio of decay constants, $f_{\eta}^2/f_{\pi^0}^2$.

- *n* ranges 7 to 11. Close or not far from QCD prediction of 6 and 10.
- Cross section ratios tend to be constant above 3 GeV.

Summarized by H.Nakazawa Hadron2013

Angular dependence

 $\gamma\gamma \to \pi^0\pi^0$

 $d\sigma/d|\cos\theta^*| \propto \sin^{-4}\theta^*$ is predicted by $q\overline{q}$ -meson model and perturbative QCD

- Fit to $\sin^{-4}\theta^* + b\cos\theta^*$
- b becomes constant above 3.2 GeV.

mode	$\alpha \sin \sin^{-\alpha} \theta^*$	GeV	$ \cos \theta^* $		
K _S K _S	3 – 8	2.6 - 3.3	< 0.8		
$\pi^+\pi^-$	Good agreement with 4	3.0 - 4.1	< 0.6		
K^+K^-	Good agreement with 4	3.0 - 4.1	< 0.6		
$\pi^0\pi^0$	Better agreement with $\sin^{-4} \theta^* + b \cos \theta^*$ Approaches $\sin^{-4} \theta^*$ above 3.1 GeV	2.4 - 4.1†	< 0.8		
$\eta \pi^0$	Good agreement with 4 above 2.7 GeV	3.1 - 4.1	< 0.8		
ηη	Poor agreement with 4 Close to 6 above 3 GeV	2.4 - 3.3	< 0.9	Summarized by H. Had	Nakazawa ron2013
	Exclude $\dagger \chi_{cJ}$ region, 3.3 - 3.6 G	eV		KEK, Jan. 2017	30

History of integrated luminosity at Belle

Nature of I=0 and I=1 interference in $K\overline{K}$

- Consider both isospin *I*=0 and *I*=1, e.g., *f_j* and *a_j*
- Their Constructive and Destructive interference based on OZI (Okubo-Zweiglizuka) rule and isospin I_z inversion.
 D. Faiman, H.J. Lipkin and H.R. Rubinstein, PL 59B,269 (1975)

Size of the cross sections for K^+K^- and $K^0\overline{K^0}$

A single resonance production of **f** or **a** decaying with the strong interaction

→ The cross sections are **similar size**.

If they are very different \rightarrow

Interference between *I*=0 and *I*=1 resonances, or effective (electromagnetic) continuum production

The difference above >~2.4GeV is explained by electric-charge difference of the quarks.

Ks Ks vertex distances

Systematic errors

Source	Uncertainty(%)	From correlation study
Tracking efficiency (for 4 tracks)	2	of different Exp# settings
Beam background effect	1	in data and signal MC
Pion identification (for 4 tracks)	2	
Non-exclusive and four-pion backgrounds	2 - 19 <	_A Half of the subtraction
Geometrical coverage and fit uncertainty	4	+ 2% from pt-fit (quad.sum)
$K^0_S K \pi$ background subtraction	1-2	Looso aut sample
K_S^0 -pair reconstruction	5-3	Loose-cut sample
Trigger efficiency	$5-7 \leftarrow C$	orrelation of the two triggers
$E_{\rm ECL}$ cut	1	offeration of the two triggers
Integrated luminosity and luminosity function	5 - 4	
L4 efficiency	$1 - 10 \longleftarrow A$	About 10% of the inefficiency
Total	9-25, typically 10	

Fitting the region W > 2 GeV

Parameterization

$$i - wave = B.W.e^{i\phi_i} + B_i$$

$$B_i = b_i \left(\frac{W}{W0}\right)^{-c_i} e^{i\phi_i}$$

(assume power behavior

for non-resonant background:

$$i = S, D_0, D_2 \text{ and } G_2; \text{ (we assume } G_0=0\text{))}$$

B.W.= $f_1(2200)$ and/or $f_1(2500)$ with J=0, 2 and 4

• Then fit $d\sigma/d\Omega$ (typically 16 free parameters)

Fit results for 13 assumptions

		*	
Assumption	No. of sol.	χ^2	ndf
f_0-f_0	2	293.3, 293.9	214
f_0 - f_2	4	$320.9,\ 321.9,\ 324.5,\ 327.6$	214
f_0 - f_4	1	291.4	214
$f_2 - f_0$	1	228.3	214
f_2 - f_2	1	260.4	214
f_2 - f_4	1	323.6, 306.7	214
$f_4 - f_0$	1	411.6	214
f_4 - f_2	2	468.6, 472.1	214
f_4 - f_4	4	$459.6,\ 464.1,\ 466.4,\ 467.5$	214
Only- f_0	1	390.0	218
Only- f_2	1	323.6	218
Only- f_4	1	518.7	218
No resonances	1	659.32	222

S. Uehara, KEK, Jan. 2017

Charmonia χ_{c0} and χ_{c2}

Fit to $\pi^0 \pi^0$ (W = 1.7 – 2.5 GeV)

Parameter	$f_4(2050)$	" $f_2(1950)$ "	Unit
$\begin{array}{l} \text{Mass} \\ \Gamma_{\text{tot}} \\ \Gamma_{\gamma\gamma} \mathcal{B}(\pi^0 \pi^0) \end{array}$	$\begin{array}{r} 1885^{+14}_{-13} \begin{array}{c} +218 \\ -25 \end{array} \\ 453 \begin{array}{c} \pm 20 \end{array} \\ 7.7^{+1.2}_{-1.1} \end{array} \\ \begin{array}{c} +23.5 \\ -5.2 \end{array} \end{array}$	$\begin{array}{r} 2038^{+13}_{-11}{}^{+12}_{-73} \\ 441^{+27}_{-25}{}^{+28}_{-192} \\ 54^{+23}_{-14}{}^{+379}_{-68} \end{array}$	MeV/c ² MeV eV
$\chi^2(ndf)$	323.2 (311)		

π^0 Transition Form Factor

PRD 86, 092007 (2012)

 $\gamma\gamma * \rightarrow \pi^0$

Coupling of neutral pion with two photons Good test for QCD at high Q²

Single-tag π^0 production in two-photon process with a large-Q² and a small-Q² photon

Theoretically calculated from pion distribution amplitude and decay constant $F(Q^2) = \frac{\sqrt{2}f_{\pi}}{3} \int T_H(x,Q^2,\mu)\phi_{\pi}(x,\mu)dx$

Measurement:

 $|F(Q^{2})|^{2} = |F(Q^{2},0)|^{2} = (d\sigma/dQ^{2})/(2A(Q^{2}))$ A(Q²) is calculated by QED |F(0,0)|^{2} = $64\pi\Gamma_{\gamma\gamma}/\{(4\pi\alpha)^{2}m_{R}^{3}\}$

Detects e (tag side) and π^0

 $Q^2 = 2EE'(1 - \cos \theta)$ from energy and polar angle of the tagged electron

Comparisons with Previous Measurements and Fits

seen in Belle result. ~ 2.3 σ difference between Belle and BaBar in 9 – 20 GeV² Fit A (suggested by BaBar) Q²|F(Q²)| = A (Q²/10GeV²)^β BaBar:

A = 0.182 ± 0.002 (± 0.004) GeV

 $\beta = 0.25 \pm 0.02$

BaBar, PRD 80, 052002 (2009)

Belle: ----

A = 0.169 ± 0.006 GeV β = 0.18 ± 0.05 χ^2 /ndf = 6.90/13 ~1.5 σ difference from BaBar

Fit B (with an asymptotic parameter) $Q^2|F(Q^2)| = BQ^2/(Q^2+C)$ Belle: $B = 0.209 \pm 0.016 \text{ GeV}$ $C = 2.2 \pm 0.8 \text{ GeV}^2$ $\chi^2/\text{ndf} = 7.07/13$ B is consistent with the QCD value (0.185GeV)

S. Uehara, KEK, Jan. 2017

Selection of the $\pi^0\pi^0$ signals

Important selection criteria:

One electron and two $\pi^{0'}s$

Three-body kinematics for tagged-*e*, untagged-*e* and the $\pi^0\pi^0$ system Small acoplanarity angle and pt-balance for tagged-*e* and the $\pi^0\pi^0$

