Y(4260) is an

authentic resonance?

Sachiko Takeuchi

(Japan College of Social Work, RCNP Osaka Univ.,

RIKEN Nishina Center)

work with

Makoto Takizawa

(Showa Pharmaceutical Univ., RIKEN Nishina Center, KEK Theory, J-PARC Branch, Belle & Belle II collaboration)

Y(4260)• JPC = 1 --

• Mass: 4251 ± 9 MeV [PDG] • Width: $120 \pm 12 \text{ MeV}$ [PDG] BaBar observed Y(4260) by an initial-stateradiation process in 2005. $e^+e^- \rightarrow \gamma_{ISB} Y(4260)$ $Y(4260) \rightarrow J/\psi \pi \pi$ BaBar PRL 95, 142001 (2005) CLEO, Belle, BESIII,

Y(4260) Invariant mass plot

Belle PRL 110, 252002 (2013)

Y(4260) Cross section

Belle PRL 110, 252002 (2013)

V1126	\cap	X(4260) DECAY	MODES
1(420	\mathbf{U}	Mode	Fraction (Γ_i/Γ)
Decay	Г1	e ⁺ e ⁻	
madac	Г ₂	$J/\psi \pi^+ \pi^-$	seen
moues	13	$J/\psi f_0(980), f_0(980) \rightarrow \pi^+\pi^-$	seen
[PDG]	4	$X(3900) \pm \pi^+, X^- \rightarrow J/\psi \pi^-$	seen
	15 F	$J/\psi \pi^{-}\pi^{-}$	seen
	6	$J/\psi \mathbf{K} \cdot \mathbf{K}$	seen
	5	V(2070)	not seen
	8	$\lambda(38/2)\gamma$	seen
	١g	$J/\psi\eta$	not seen
	Γ ₂₅	$D\overline{D}$	not seen
	Γ ₂₆	$D^0 \overline{D}^0$	not seen
	Γ ₂₇	D^+D^-	not seen
	Γ ₂₈	$D^*D+c.c.$	not seen
	F ₂₉	$D^*(2007)^0 D^0 + c.c.$	not seen
	30	$D^*(2010)^+ D^- + c.c.$	not seen
	31	$D^* D^*$	not seen
	32	$D^{*}(2007)^{\circ}D^{*}(2007)^{\circ}$	not seen

Y(4260): exotic meson?

Decay modes

Decay width of Y(4260) $\rightarrow J/\psi \pi \pi$ is one-order larger than the ordinary $c\overline{c}$ mesons. • Decay to $D\overline{D}$, $D^{(*)}\overline{D}$, $D^{(*)}\overline{D}^{(*)}$ is not observed though Y(4260) is well above the $D\overline{D}$ threshold (3740MeV). Radiative decay to X(3872).

Y(4260): exotic meson?

Mass spectra

Quark potential model gives no $c\overline{c}$ state in this mass range.

 $\begin{array}{ccc} J/\psi(3097) & 1^{3}S_{1} \\ \psi(3686) & 2^{3}S_{1} \\ \psi(3770) & 1^{3}D_{1} \\ \psi(4040) & 3^{3}S_{1} \\ \psi(4160) & 2^{3}D_{1} \\ \psi(4415) & 4^{3}S_{1} \end{array}$

Theoretical approaches Review: "An overview of XYZ new particles," Xiang Liu, Chin.Sci.Bull. 59 (2014) 3815-3830 arXiv:1312.7408[hep-ph]

Theoretical approaches

- $c\bar{c}$ state with screened potential.
- Charmonium hybrid (ccg)
- Diquark-antidiquark [cs][cs]
- Hadronic molecule $D_1\overline{D} + D_0\overline{D}^{(*)}$.
- Non-resonant explanation: interference.

Our approach

meson quark hybrid: $D_1\overline{D} + \cdots + q\overline{q}c\overline{c}$

long range short range

Y(4260): our approach

Assumptions

 Y(4260) is a superposition of two-meson states. (Not that we exclude the possibility of the $c\overline{c}$ components. Just we have not include them yet.) The internal quark degrees of freedom appear at the short distance of the twomeson states.

There, the Hamiltonian is $\Sigma(K^{(q)}_{i} + V^{(q)}_{ij})$

Y(4260): our approach

- Assumptions (cont'd)
 - The interaction between the two mesons comes only from the two-body interaction between (anti)quarks.
 - The interaction between quarks is
 - proportional to $\lambda . \lambda$, which consists of the
 - central, spin-spin, spin-orbit, and the tensor

terms.

The interaction between quarks gives the meson mass difference.

The state is a quark-antiquark state

- color singlet, appropriate flavor-spin symmetry
- orbital wave function is a single gaussian with
 - a size parameter of $x_0/\sqrt{m_q}$, $x_0 \sim 0.6$ fm^{1/2}
 - ρ and λ modes are included
- Matrix elements of Hamiltonian is

$$\langle H \rangle = m_q + \langle \frac{p}{2\mu_{12}} \rangle \qquad (=m_0)$$

 $+\lambda\cdot\lambda(c_{ss}\sigma\cdot\sigma+c_{SLS}SLS+c_{ALS}ALS+c_TT)$

mo and c's are flavor- and (Os/Op)-dependent, fixed by the single meson masses.

• size of terms in MeV $(q\overline{q})$

	m0(0s)	css(0s)	m0(0p)	css(0p)	cSLS	cALS	сТ
qq	723.865	58.785	1226.93	18.98	45.98	-	40.99

qq	Obs Mass (input)
η (1S ₀)	548
ω (³ S ₁)	782.65
$h_1(1170)(^1P_1)$	1170
f ₀ (980)(³ P ₀)	990
f ₁ (1285)(³ P ₁)	1281.9
f ₂ (1270)(³ P ₂)	1275.5

• size of terms in MeV ($c\overline{c}$)

	m0(0s)	css(0s)	m0(0p)	css(0p)	cSLS	cALS	сТ
cī	3068.59	28.33	3525.32	-0.02	34.96		10.16

$C\overline{C}$	Obs Mass (input)
$\eta_{c}(1S)(^{1}S_{0})$	2983.6
$J/\psi(1S)(^{3}S_{1})$	3096.916
$h_c(1P)(^1P_1)$	3525.38
$\chi_{c0}(1P)(^{3}P_{0})$	3414.75
$\chi_{c1}(1P)(^{3}P_{1})$	3510.66
$\chi_{c2}(1P)(^{3}P_{2})$	3556.20

• size of terms in MeV $(c\overline{q})$

 $D_2^*(2460)(^{3}P_2)$

		m0(0s)	css(0s)	m0(0p)	css(0p)	cSLS	cALS	сТ		
C	p	1973.88	35.29	2430.82	2.25	36.41	-1.46	14.44		
		сq		Obs I	Mass (in	put)	D1 and D1' are			
	D(¹ S ₀)			1868.02			assumed to be			
	D*(2010)(³ S ₁)				2009.17			pure c(j=1/2) +		
	D ₀ *(2400)(³ P ₀)			2302.5 †			q (j=1/2 or 3/2)			
D1	D1'(2430)(cq:1/2-1/2)				2427			states → one		
$D_1(2420)(c\overline{q}:1/2-3/2)$				2422.6			constraint for			

2463.7

cT.

†: Belle BaBar neutral average

Two-meson states

• All the $J^{PC} = 1^{--}$ two-meson states with

relative S-wave: 14 states below

Wave function

The internal quark degrees of freedom appear at the 0s-configuration of twomeson state =(0s)²0p configuration of the 4 quark states.

$$\Psi(r) = \sum_{i} c_i \left(\psi_i^{(q)} + \psi_i^{(m)}(r) \right)$$

 $\psi_{f_0 J/\psi}^{(q)} = \mathcal{P}[q\bar{q}({}^{3}P_0)c\bar{c}({}^{3}S_1);(0s)]$

 $\psi_{f_0,J/\psi}^{(m)}(r) = \mathcal{P}[\overline{0s}] \ \psi_{f_0,J/\psi}(r)$

Wave function

 $\langle \psi_i^{(q)} | \psi_i^{(q)} \rangle \neq 0$ in general

 The internal quark degrees of freedom appear at the 0s-configuration of twomeson state =(0s)²0p configuration of the 4 quark states.

Hamiltonian

 $\langle H \rangle = \sum m_q + \langle \frac{p^2}{2\mu} \rangle$

 $H = K^{(m)}$

- Hamiltonian for two-meson systems.
 - The interaction between the two mesons comes only from the two-body interaction between (anti)quarks.

$$+ |0s\rangle \Big(\langle (0s)^2 0p | H^{(q)} - E | (0s)^2 0p \rangle - \langle 0s | K^{(m)} - E | 0s \rangle \Big) \langle 0s | H^{(q)} - E | 0s \rangle \Big) \Big| \langle 0s | H^{(q)} - E | 0s \rangle \Big) \Big| \langle 0s | H^{(q)} - E | 0s \rangle \Big| \langle 0s | H^{(q)}$$

separable gaussian potential

 $+\sum \lambda \lambda \left(c_{ss}\sigma\sigma + c_{SLS}SLS + c_{ALS}ALS + c_TT\right)$

Hamiltonian

• Potential becomes nonzero only between $(c\overline{c})$

 $(q\overline{q})$ and $(c\overline{q})(q\overline{c})$ states.

(because all the quarks are different from each other, no anti-symmetrization is necessary).

 $\eta h_{c1}, \cdots, \omega \chi_{cj}, h_1 \eta_c, \cdots, f_j J/\psi, \overline{D}D, \cdots, \overline{D}^* D_2$

Hamiltonian

V =

• Potential becomes nonzero only between $(c\overline{c})$

 $(q\overline{q})$ and $(c\overline{q})(q\overline{c})$ states.

(because all the quarks are different from each other, no anti-symmetrization is necessary).

 $\eta h_{c1}, \cdots, \omega \chi_{cj}, h_1 \eta_c, \cdots, f_j J/\psi, \overline{D}D, \cdots, \overline{D}^* D_2$

E is replaced by 4260 MeV.

rearrangement factor (flavor spin orbital),

should be multiplied by 1/3 (color factor).

MM'		$h_1\eta_c$	$f_0 J/\!\psi$	$f_1 J\!/\!\psi$	$f_2 J\!/\!\psi$	ηh_{c1}	$\omega\chi_{c0}$	$\omega\chi_{c1}$	$\omega\chi_{c2}$	-
threshold		4154	4087	4379	4373	4073	4198	4294	4339	
$[\overline{D}D_{rac{1}{2}1}]_{-}$	4295	$\sqrt{rac{\mu_c}{12}}$	$-\sqrt{\frac{\mu_c}{4}}$	$\sqrt{rac{\mu_c}{3}}$	0	$\sqrt{rac{\mu_u}{12}}$	$\frac{\sqrt{\mu_u}}{6}$	0	$-\sqrt{\frac{5\mu_u}{9}}$	
$[\overline{D}D_{rac{3}{2}1}]_+$	4289	$\sqrt{rac{\mu_c}{6}}$	0	$\sqrt{rac{\mu_c}{24}}$	$-\sqrt{\frac{5\mu_c}{8}}$	$\sqrt{\frac{\mu_u}{6}}$	$-\sqrt{\frac{2\mu_u}{9}}$	$-\sqrt{\frac{3\mu_u}{8}}$	$-\sqrt{rac{5\mu_u}{72}}$	
$[\overline{D}^*D_0]_+$	4327	$-\sqrt{rac{\mu_c}{12}}$	$rac{\sqrt{\mu_c}}{2}$	$\sqrt{rac{\mu_c}{3}}$	0	$-\sqrt{\frac{\mu_u}{12}}$	$rac{\sqrt{\mu_u}}{2}$	$-\sqrt{\frac{\mu_u}{3}}$	0	
$[\overline{D}^*D_{\frac{1}{2}1}]$	4436	$-\sqrt{\frac{\mu_c}{6}}$	$-\sqrt{\frac{\mu_c}{2}}$	0	0	$-\sqrt{\frac{\mu_u}{6}}$	$-\sqrt{\frac{\mu_u}{18}}$	$\sqrt{\frac{\mu_u}{6}}$	$-\sqrt{\frac{5\mu_u}{18}}$	
$[\overline{D}^*D_{rac{3}{2}1}]_+$	4430	$\sqrt{rac{\mu_c}{12}}$	0	$\sqrt{rac{3\mu_c}{16}}$	$\sqrt{rac{5\mu_c}{16}}$	$\sqrt{rac{\mu_u}{12}}$	$\sqrt{rac{4\mu_u}{9}}$	$\sqrt{rac{\mu_u}{48}}$	$-\sqrt{rac{5\mu_u}{144}}$	
$[\overline{D}^*D_2]_+$	4473	$-\sqrt{rac{5\mu_c}{12}}$	0	$\sqrt{rac{5\mu_c}{48}}$	$-rac{\sqrt{\mu_c}}{4}$	$-\sqrt{\frac{5\mu_u}{12}}$	0	$-\sqrt{rac{5\mu_u}{48}}$	$-rac{\sqrt{\mu_u}}{4}$	
			μ_{i}	u = m	$u_u/(m_u$	$+m_c),$	$\mu_c = r$	$m_c/(m_c)$	$_{u}+m_{c})$)

Results (a bound state) • 10-channel calculation ($\overline{D}D_1$ and above). All the S-wave two-meson states whose thresholds are above 4290 MeV. → bound state of 4289 MeV (2 MeV below the DD_1 threshold) component Probability Probability component DD₁ 0.577 $f_1 J/\psi$ 0.041 0.018 0.166 $\omega \chi_{c2}$ $\omega \chi_{c1}$ \overline{D}^*D_2 DD1[°] 0.077 0.013

Results (a bound state)

• Main components are $\overline{D}D_1$ and $\omega \chi_{c1}$:

component	Probability	component	Probability
DD ₁	0.577	f ₁ J/ψ	0.041
$ω$ χ c1	0.166	ω χc2	0.018
DD1'	0.077	D*D2	0.013
f ₂ J/ψ	0.065	D*D1	0.002
D∗D₀	0.041	\overline{D}^*D_1	0.000

Decay modes? • Decay to $Zc(3900)\pi$ can be derived from $D_1 \rightarrow D^* \pi$ decay in Y(4260). • $\overline{D}D_1$ in Y(4260) $\rightarrow \overline{D}D^*\pi \rightarrow Zc(3900)\pi$ Radiative decay to X(3872) can be derived from the $D_1 \rightarrow D^* \gamma$ decay (if it exists) in Y(4260). • $\overline{D}D_1$ in Y(4260) $\rightarrow \overline{D}D^* \gamma \rightarrow X(3872) \gamma$

Decay modes? • "No decay to $\overline{D}^{(*)}D^{(*)}$ " may be derived because main components are $\overline{D}^{(*)}D_J$, which are orthogonal to $\overline{D}^{(*)}D^{(*)}$. Model with relative P-wave two-meson states should be performed. To discuss quantitatively a large decay width to the final $f_0(980)J/\psi$, we need a more realistic Y(4260), deeply bound and large width.

Summary and outlook

- We discuss Y(4260) by a simple hadron-quark hybrid model.
- There is a resonance with a mass of 4290 MeV and a width of 4 MeV, 1 MeV below the DD1 threshold.
 - To have a resonance just from the short range interaction is a surprise!
 - This can be a "seed" of the observed Y(4260).
 - \leftrightarrow obs: M = 4251 ± 9 MeV, Γ = 120 ± 12 MeV
- P-wave two-meson states, $c\overline{c}$ components, meson-

exchange effects, meson width, should be included.

Personal impression Exotic hadrons. Some advertisement • X(3872) type: [PTEP 2013, 093D01; 2014, 123D01] cc in the two-hadron continuum. …neutral Pc pentaguark type: [PLB764(2017)254] color-octet configuration gives an attraction between hadrons. ... BB or BM • Y(4260) type: [current work] many $q\bar{q}c\bar{c}$ states coherently make a bound state ... negative C-parity? charged? • Kinematic feature may make peaks?

Back up

Roarranaomont factor

MM'		$h_1\eta_c$	$f_0 J\!/\!\psi$	$f_1 J\!/\!\psi$	$f_2 J/\!\psi$	ηh_{c1}	$\omega\chi_{c0}$	$\omega\chi_{c1}$	$\omega\chi_{c2}$	$\eta J/\!\psi \phi_P$	$\omega\eta_c\phi_P$
threshold		4154	4087	4379	4373	4073	4198	4294	4339	3645	3767
$[\overline{D}D_{rac{1}{2}1}]_{-}$	4295	$\sqrt{rac{\mu_c}{12}}$	$-\sqrt{\frac{\mu_c}{4}}$	$\sqrt{rac{\mu_c}{3}}$	0	$\sqrt{rac{\mu_u}{12}}$	$\frac{\sqrt{\mu_u}}{6}$	0	$-\sqrt{\frac{5\mu_u}{9}}$	$\sqrt{\frac{1}{6}}$	$\sqrt{\frac{1}{6}}$
$[\overline{D}D_{rac{3}{2}1}]_+$	4289	$\sqrt{rac{\mu_c}{6}}$	0	$\sqrt{rac{\mu_c}{24}}$	$-\sqrt{rac{5\mu_c}{8}}$	$\sqrt{\frac{\mu_u}{6}}$	$-\sqrt{rac{2\mu_u}{9}}$	$-\sqrt{rac{3\mu_u}{8}}$	$-\sqrt{rac{5\mu_u}{72}}$	$-\sqrt{rac{1}{12}}$	$-\sqrt{rac{1}{12}}$
$[\overline{D}^*D_0]_+$	4327	$-\sqrt{rac{\mu_c}{12}}$	$rac{\sqrt{\mu_c}}{2}$	$\sqrt{rac{\mu_c}{3}}$	0	$-\sqrt{\frac{\mu_u}{12}}$	$\frac{\sqrt{\mu_u}}{2}$	$-\sqrt{\frac{\mu_u}{3}}$	0	$\sqrt{\frac{1}{6}}$	$-\sqrt{\frac{1}{6}}$
$[\overline{D}^*D_{rac{1}{2}1}]$	4436	$-\sqrt{\frac{\mu_c}{6}}$	$-\sqrt{\frac{\mu_c}{2}}$	0	0	$-\sqrt{\frac{\mu_u}{6}}$	$-\sqrt{\frac{\mu_u}{18}}$	$\sqrt{\frac{\mu_u}{6}}$	$-\sqrt{rac{5\mu_u}{18}}$	0	$-\sqrt{\frac{1}{3}}$
$[\overline{D}^*D_{rac{3}{2}1}]_+$	4430	$\sqrt{rac{\mu_c}{12}}$	0	$\sqrt{rac{3\mu_c}{16}}$	$\sqrt{rac{5\mu_c}{16}}$	$\sqrt{rac{\mu_u}{12}}$	$\sqrt{\frac{4\mu_u}{9}}$	$\sqrt{rac{\mu_u}{48}}$	$-\sqrt{rac{5\mu_u}{144}}$	$-\sqrt{\frac{3}{8}}$	$-\sqrt{\frac{1}{24}}$
$[\overline{D}^*D_2]_+$	4473	$-\sqrt{rac{5\mu_c}{12}}$	0	$\sqrt{\frac{5\mu_c}{48}}$	$-rac{\sqrt{\mu_c}}{4}$	$-\sqrt{rac{5\mu_u}{12}}$	0	$-\sqrt{rac{5\mu_u}{48}}$	$-rac{\sqrt{\mu_u}}{4}$	$-\sqrt{\frac{5}{24}}$	$\sqrt{rac{5}{24}}$
$\overline{D}D\phi_P$	3736	$rac{\sqrt{\mu_u}}{2}$	$-\sqrt{\frac{\mu_u}{12}}$	$rac{\sqrt{\mu_u}}{2}$	$-\sqrt{rac{5\mu_u}{12}}$	$-rac{\sqrt{\mu_c}}{2}$	$\sqrt{rac{\mu_c}{12}}$	$rac{\sqrt{\mu_c}}{2}$	$\sqrt{rac{5\mu_c}{12}}$	0	0
$[\overline{D}D^*]\phi_P$	3877	0	$\sqrt{\frac{\mu_u}{3}}$	$-\frac{\sqrt{\mu_u}}{2}$	$-\sqrt{rac{5\mu_u}{12}}$	0	$\sqrt{rac{\mu_c}{3}}$	$rac{\sqrt{\mu_c}}{2}$	$-\sqrt{rac{5\mu_c}{12}}$	0	0
$(\overline{D}^*D^*)_0\phi_P$	4018	$-\sqrt{\frac{3\mu_u}{4}}$	$-\frac{\sqrt{\mu_u}}{6}$	$\sqrt{rac{\mu_u}{12}}$	$-\sqrt{rac{5\mu_u}{36}}$	$\sqrt{rac{3\mu_c}{4}}$	$\frac{\sqrt{\mu_c}}{6}$	$\sqrt{rac{\mu_c}{12}}$	$\sqrt{rac{5\mu_c}{36}}$	0	0
$(\overline{D}^*D^*)_2\phi_P$	4018	0	$\sqrt{\frac{5\mu_u}{9}}$	$\sqrt{rac{5\mu_u}{12}}$	$\frac{\sqrt{\mu_u}}{6}$	0	$-\sqrt{\frac{5\mu_c}{9}}$	$\sqrt{rac{5\mu_c}{12}}$	$-rac{\sqrt{\mu_c}}{6}$	0	0

qq meson masses

$$\begin{split} 1s0 &= m0_{(0s)} - 3cSS_{(0s)} \\ 3s1 &= m0_{(0s)} + 1cSS_{(0s)} \\ 1p1 &= m0_{(0p)} - 3cSS_{(0p)} \\ 3p0 &= m0_{(0p)} + 1cSS_{(0p)} - 2cSLS - 4cT \\ 3p1 &= m0_{(0p)} + 1cSS_{(0p)} - 1cSLS + 2cT \\ 3p2 &= m0_{(0p)} + 1cSS_{(0p)} + 1cSLS - 2/5cT \\ p11 &= m0_{(0p)} - 1/3cSS_{(0p)} - 2/3cSLS - 4/3cALS + 4/3cT \\ p31 &= m0_{(0p)} - 5/3cSS_{(0p)} - 1/3cSLS + 4/3cALS + 2/3cT \end{split}$$

 $ar{U}$ し、 \overline{D}_{11} と \overline{D}_{31} をfitするときには、4cSS-cSLS+cALS+2cT=0を条件とした。

x_0 is fix to be 0.6 fm^{1/2} because

 When we minimize the energy by a single gauss wave function … PLB764(2017)254.

Table 4: The size parameter b_{ij} (fm) and the parameter x_0 (fm^{1/2}) obtained by minimizing the central part of the Hamiltonian, H_c , for each of the systems.

system	x_0	b_{uu}	b_{uc}	b_{cc}
uud	0.60	0.68		
uuc	0.62	0.71	0.54	
ucc	0.65		0.57	0.31
$u\overline{c}$	0.56		0.49	
$c\overline{c}$	0.61			0.29