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Key question of relativistic heavy ion physics:
Does one reach thermal equilibrium fast enough to really probe
the quark gluon plasma ?

In HICs one produces the strongest magnetic fields in the
universe

Does this influence thermalization ?
Does this lead to novel effects like the CME ?
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Time and space dependence of these magnetic fields
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[Deng et al ’12] [Gursoy et al ’13]

The time profile depends crucially on the electric conductivity.
Gursoy et al. use the lattice QCD values for equilibrium.
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relevance of QCD & magnetic fields for astrophysics

arXiv:0801.4387 gravitational wave signal from neutron star
merger
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Lee, Fukushima, Kharzeev et al.: The QCD chiral anomaly
GµνG̃µν ∼ E⃗color ⋅ B⃗color can induce an electromagnetic E⃗
parallel or antiparallel to B⃗. STAR 1404.1433 :
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Lattice QCD cannot help directly , because the CME is
highly dynamical. Also, µB, µiso ≠ 0.
While the CME effect should exist in principle, its size
could well be unmeasurable small, see B. Müller and AS,
1009.1053.
see below: magnetic fields influence the flow pattern
(paramagnetic squeezing).
Lattice calculations with magnetic fields allow to check
effective dynamical descriptions needed for comparison
with experiment.
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Magnetic field on the Lattice
QCD is contained in the generating functional:

Z [Ja
µ, η̄

i , ηi
] = ∫ D[Aaµ, ψ̄i , ψi

]

exp(i∫ d4x [LQCD − Ja
µAa

µ − ψ̄
iηi

− η̄iψi])

Discretized space time⇒ e.g. the Wilson action

U(l1) = exp(−igAb
(l1)

λb

2
a)

W◻ = Tr{U(l1)U(l2)U(l3)U(l4)}

∑
◻

2
g2 (3 −Re W◻) =

1
4 ∫

d4x (F a
µνF a

µν + O(a2
))
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Magnetic field on the torus

torus T 2 with surface
area LxLy

picture from [D’Elia et al ’11]

● phase factor for a charged particle transported along path
C: exp(iq ∮C dxµAµ)

● Stokes theorem: ∮C dxµAµ = ∫∫A dσB = B ⋅A
but also = − ∫∫T 2−A dσB = −B ⋅ (LxLy −A)

● equality of phase factors gives quantization condition
[Hashimi, Wiese ’09]

exp(iqBLxLy) = 1 → qBLxLy = 2π ⋅Nb, Nb ∈ Z
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How to discretize Aµ on the lattice?

simplest choice uy = exp(iaqAy) = exp(iφnx), with the flux unit
φ = a2qB plus local U(1) gauge transformation
ψ(Nx ,ny)→ ψ(Nx ,ny) ⋅V ny with V = exp(iφNx)

This restores periodicity in the x-direction.

remark: det( /D(B) +mlat
f ) > 0 so no sign problem
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Observables sensitive to the QCD transition

● chiral condensate
→ chiral symmetry breaking

ψ̄fψf =
∂ logZ
∂mf

● chiral susceptibility
→ chiral symmetry breaking

χf =
∂2 logZ
∂m2

f

● Polyakov loop
→ deconfinement

P =
1
V
∑
x

Tr∏
x4

U4(x,x4)
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C. Gattringer arXiv:1004.2200, pure gauge theory
phase of the Polyakov loop: Z3 symmetry for SU(3)
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Transition characteristics

chiral susceptibility
(∼ specific heat)

χ =
∂2 logZ
∂m2

transition temperature: peak maximum
order of transition: volume-dependence of height
h(V)∝ Vα

1st (α = 1), 2nd (0 < α < 1) or crossover (α = 0)
bubble nucleation versus smooth transition
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Transition characteristics at B = 0

● simulations with physical mlat
f ,

continuum extrapolation
● no singular behavior as V →∞

⇒ transition is analytic
crossover
[Aoki, Endrodi, Fodor, Katz, Szabó ’06]
there is no unique transition temperature

 0

 0.2

 0.4

 0.6

 0.8

 1

 120  140  160  180  200

T [MeV]

∆l,s

fK scale

asqtad: N
τ
=8

N
τ
=12

HISQ/tree: N
τ
=6

N
τ
=8

N
τ
=12

N
τ
=8, ml=0.037ms

stout cont.
! !!!!!

!!!!
!!!
!!
!
!
!!!
!
!
!
!
!
!
!
!

""""
"""
"""
""
""
"
"
"
"

!!!!!!
!!!
!
!
!!
!
!!
!!

# # ##
###
#
# #
#
#
#
# #

##
!!
""
!!

Nt"16
Nt"12
Nt"10
Nt"8

Continuum

100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

T !MeV"
Re
no
rm
al
iz
ed
Po
ly
ak
ov
lo
op

● T ψ̄ψ
c ≈ 150 MeV, T P

c ≈ 175 MeV [BWc ’06,’09,’10]
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Condensate at B > 0: ‘magnetic catalysis’

● what happens to ψ̄ψ (⟨+q ↑,−q ↓⟩) in magnetic field?
⇒ magnetic moments parallel, energetically favored state

● dimensional reduction 3 + 1→ 1 + 1 for LLL

E0(cont .) =
√

p2
z +m2 + (2n + 2sz + 1)mωc +

aeeB
m

E0(LLL) =
√

p2
z +m2, #0 =

∣qB∣ ⋅ LxLy

2π
● chiral condensate↔ spectral density near zero

ψ̄ψ ∝ ρ(0) [Banks, Casher ’80]

● in the chiral limit, to maintain ψ̄ψ > 0
(NJL [Gusynin, Shovkovy et al ’96])

B = 0 ρ(p)dp ∼ p2dp “we need a strong interaction”
B ≫ m2 ρ(p)dp ∼ qBdp “the weakest interaction suffices”
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● magnetic catalysis at zero temperature is a robust concept:
χPT, NJL model, AdS-CFT, linear σ model, . . .
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Inverse magnetic catalysis

● lattice QCD, physical mπ, continuum limit [Bali et al ’11, ’12]

● at T ≈ 150 MeV the condensate is reduced by B
dubbed ‘inverse magnetic catalysis’
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Phase diagram
● inflection point of ψ̄ψ(T ) defines Tc
● significant difference whether IMC is exhibited or not:

lattice QCD, physical mπ, continuum limit [Bali et al ’11]
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● Suggestion: Two competing mechanisms at finite B
[D’Elia et al ’11, Bruckmann, Endrodi, Kovács 1303.3972]

direct (valence) effect B ↔ qf
indirect (sea) effect B ↔ qf ↔ g

⟨ψ̄ψ(B)⟩∝ ∫ DU e−Sg det( /D(B,U) +m)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sea

Tr [( /D(B,U) +m)
−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
valence

BB
BB
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Matter in magnetic fields (linear response)
●paramagnets: attracted by magnetic field
●diamagnets: repel magnetic field

paramagnet: liquid oxygen diamagnet: frog

is thermal QCD as a medium para- or diamagnetic?
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● free energy density in background magnetic field

f (B) = −
T
V

logZ(B)

● magnetization

M = −
∂f

∂(eB)
, M∣B=0 = 0

● susceptibility

χ =
∂M

∂(eB)
∣
B=0

= −
∂2f

∂(eB)2 ∣
B=0

● sign distinguishes between
paramagnets (χ > 0) drawn into magnetic field
diamagnets (χ < 0) repelled by magnetic field
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fermions give paramagnetic behaviour, bosons diamagnetic
⇒ Expectation for the susceptibility
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Magnetic susceptibility on the lattice

magnetic flux quantization

a2qB =
2πNb

NxNy
, Nb = 0,1, . . . ,NxNy

χ as derivative is not directly accessible⇒ various
methods to circumvent this problem: Bali et al 1303.1328,
DeTar et al 1309.1142, Bonati et al 1307.8063, Bali et al
1406.0269
here: calculate f (B) and differentiate it numerically
lattice setup: stout smeared staggered quarks + Symanzik
gauge action, physical pion mass, continuum estimate
based on Nt = 6,8,10
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with conventional Monte-Carlo techniques, derivatives of
logZ can be calculated, but not logZ ∝ f itself
rewrite logZ as the integral of its derivatives at constant Nb

logZ(∞) − logZ(mph
f ) = ∫

∞

mph
f

dmf
∂ logZ
∂mf

take difference ∆ logZ = logZ(Nb) − logZ(0)

∆ logZ(∞)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

−∆ logZ(mph
f ) = ∫

∞

mph
f

dmf
∂∆ logZ
∂mf

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆ψ̄fψf

∆ logZ obtained as integral of condensates
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obtain ∆ logZ as an integral for each B
interpolate ∆ logZ as function of B
differentiate to obtain χ∝ ∆ logZ ′′
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Susceptibility from the lattice

● comparison to Hadron Resonance Gas model (low T )
and to perturbation theory (high T )

● The quark gluon plasma is paramagnetic
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Other results: Gluon anisotropies 1303.1328

A(E) =
T
V

⟨
β

6
∑
n

(trE2
⊥(n) − trE2

∥ (n))⟩
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The Pisa group found an anisotropic heavy quark potential.
1403.6094
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There is hardly any effect on topological charge density
1303.1328
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The correlation between topological charge and electric current

J f
ν(x) = ψ̄fγνψf (x)

Df (∆) =
⟨qtop(x) ⋅ J f

t (x +∆)⟩

√

⟨q2
top(x)⟩⟨Σf

xy(x)⟩

lattice results:
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To interpret this result we extended the model
Basar, Dunne and Kharzeev, 1112.0532
to arbitrary magnetic field strength and got in our model the
prediction for LLL dominance

Df (model) ≈ 1

in contrast to
Df (lattice) ≈ 0.1

While you can criticize our model extension, this result fits very
well to what we wrote in 1009.1053
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Are any of these effects phenomenologically relevant ?
Example CME: comparing Hirono, Hirano and Kharzeev (HHK),
1412.0311 with Müller and Schäfer (MS), 1009.1053

∆±
=

dN+ − dN−

dN+ + dN− = Cem τBeB
∣Q5∣

V

HHK MS

n5 = ∣Q5∣/V (0.35 GeV)3 (0.4 GeV)3

Cem 0.2 GeV−4 0.02 GeV−4

τBeB 4 GeV 0.04 GeV !!

⟨∆±(th)⟩ ≈ ⟨∆±(exp)⟩ ⟨∆±(th)⟩ ≪ ⟨∆±(exp)⟩
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Can experiment decide ?
The planned isobar run at RHIC comparing 96Zr with 96Ru
(same A different Z).

problem: possible effects of µiso

What can the lattice say ?

Endrődi and Brandt have recently studied the case µiso ≠ 0,
µB = 0 1611.06758
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Z = ∫ DU e−βSG (detMlight)
1/4

(detMs)
1/4

Mlight = /D(τ3µiso) +mlight1 + iλη5τ2

= (
/Dµ +mlight λη5
−λη5 /D−µ +mlight

)

Ms = /D(0) +ms

/D = γµDµ + γ0 µiso τ3

One has to analyze λ→ 0 to get a well-defined result.
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calculable quantities

⟨π⟩ =
T

2V
⟨tr

λ

∣ /D(µiso) +mlight∣
2 + λ2

⟩

⟨ψ̄ψ⟩ =
T

2V
⟨Re tr

/D(µiso) +mlight

∣ /D(µiso) +mlight∣
2 + λ2

⟩

⟨niso⟩ =
T

2V
⟨Re tr

( /D(µiso) +mlight)
† /D(µiso)

′

∣ /D(µiso) +mlight∣
2 + λ2

⟩
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The “Silver Blaze” phenomenon
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Conclusions

QCD in a magnetic field is a truly fascinating topic
much insight can be obtained from lattice calculations
Simple models are misleading and have to be substituted
by descriptions which agree with all lattice results.
Without tight quantitative control of magnetic field effects
many aspects of HICs cannot be rigorously interpreted
For the RHIC isobar run it is important to know
µiso(

96Zr ,96 Ru)
This is also relevant for astrophysics and cosmology
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