KEK theory center workshop on Hadron and Nuclear Physics in 2017 (KEK-HN-2017) January 7 - 10, 2017 Kobayashi Hall, KEK, Tsukuba, Japan

Production of ΣNN quasibound states

Toru Harada

Osaka Electro-Communication University/ J-PARC Branch, KEK Theory Center, IPNS, KEK

Dynamics in Strangeness Nuclear Systems

Various effects on the hyperon mixing
Related to the 3BF in nuclei

Keyword: Hyperon-mixing

Important role of Σ hyperons in nuclear matter

ANN 3BF

PHYSICAL REVIEW C 47, 1000 (1993)

Resonances in Λd scattering and the Σ hypertriton

I.R. Afnan, B.F. Gibson

Separable pot.+Faddeev calc.

"This suggests that a certain class of $\Lambda N\mathcal{N}\Sigma N$ potentials we can form a Σ hypertriton with a width of about 8 MeV."

Nuclear Physics A 611 (1996) 461-483

Structure of the $A = 3 \Sigma$ -hypernuclei

Yoshimitsu H. Koike^{a,1}, Toru Harada^{b,c,2}

"There exist unstable bound (quasibound) states of S=1/2, T=1 ($_{\Sigma}{}^{3}$ H, $_{\Sigma}{}^{3}$ He, $_{\Sigma}{}^{3}$ n), due to the coupling through the Σ N potential which strongly admixtures ${}^{3}S_{1}$, $T_{NN}=0$ and ${}^{1}S_{0}$, $T_{NN}=1$ states in the NN pair."

PHYSICAL REVIEW C 76, 034001 (2007)

 ΛNN and ΣNN systems at threshold. II. The effect of D waves

H. Garcilazo, A. Valcarce, T. Fernandez-Carames

Chiral constituent quark model pot+ Faddeev calc. "We find that the Σ NN system has a quasibound state in the (I,J)=(1,1/2) channel very near threshold with a width of about 2.1 MeV. "

Our Purpose

- We demonstrate the inclusive and semi-exclusive spectra in the ³He(K⁻,π[∓]) reactions theoretically within a distorted-wave impulse approximation by using a coupled (2N-Λ)+(2N-Σ) model with a *spreading* potential.
- Is there a quasibound in ΣNN systems ?

I will focus on

- (1) the structure of the ΣNN quasibound states,
- (2) the Σ NN signal appeared in the π^- and π^+ spectra,
- (3) an important role of the channel coupling in ΣNN .

Keyword: Hyperon-mixing

Outline

- 1. Σ hyperon in nuclei (Introduction)
- 2. Calculations
 - Microscopic Y-(2N) folding-model potential
 - Σ NN quasibound states ${}_{\Sigma}^{3}$ He, ${}_{\Sigma}^{3}$ H, ${}_{\Sigma}^{3}$ n
 - Production within DWIA (K⁻, π^-), (K⁻, π^+) reactions
- 3. Results and Discussion
 - π^- and π^+ spectra for the Σ NN quasibound states ${}^{3}_{\Sigma}$ He, ${}^{3}_{\Sigma}$ n
 - no peak of the π^+ spectrum in BNL-E774 data
- 4. Summary

1. Σ hyperon in nuclei (Introduction)

Study of a Σ-hyperon in Nuclei (1)

Neutron star core

= "An interesting neutron-rich hypernuclear system"

Repulsion inside the nucleus and shallow attraction outside the nucleus

Due to the insufficient quality of the these data, the potential is not so sensitive to the radial behavior of U_{Σ} inside the nucleus.

Study of a Σ-hyperon in Nuclei (3)

$$U_{\Sigma} = \frac{2}{1 + \exp[(r - R)/a]}$$

(V, W) = (+90 MeV, -40 MeV)

This analysis suggests that the Σ -nucleus potential has a repulsion with a sizable imaginary.

Inclusive spectrum in ${}^{28}Si(\pi^-, K^+)$ reaction at 1.2GeV/c

Exp. Data from P.K.Saha, H. Noumi, et al., PRC70(2004)044613

 $(V_{\Sigma}, W_{\Sigma}) = (+30, -40)$ MeV by χ^2/N -fitting

Short-range repulsive core in baryon-baryon intreaction

S = 0 state	[51]	[33]	
1			ΛΛ-ΞΝ-ΣΣ(I=0), H-dibaryon
8 ₈	1		$\Sigma N(I=1/2, {}^{1}S_{0})$ Pauli forbidden
27	4/9	5/9	$NN(^{1}S_{0})$
S = 1 state	[51]	[33]	
8 _A	5/9	4/9	
10	0.10	1 /0	
10	8/9	1/9	$\Sigma N(I=3/2, S_1)$ almost Pauli forbidden

>SU(6) symm. → Strongly spin-isospin dependence

<u> ΣN threshold cusp (I = 1/2, {}^{3}S_{1}) in K^{-}d \rightarrow \pi^{-}\Lambda p Reactions</u>

<u>Two-body ΣN potentials in free space</u>

Simple, But easy to understand

Effective Sigma-nucleon (absorptive) potential : SAP

T.Harara, S.Shinmura, Y.Akaishi, H.Tanaka, NPA507 (1990) 715.

S-matrix equivalent to Nijmegen model-D (model-F)

> There is strong spin-isospin dependence in ΣN potential.

Observation of a ${}^{4}\Sigma$ He Bound State

$$\Sigma^{+} = 7 \pm 0.3$$
 MeV
(*a*) BNL-AGS
 $U^{\pi} = 0^{+}$ $T \simeq 1/2$

T. Nagae, et al., PRL. 80(1998)1605.

BBBB (T=1/2,S=0) [28*]: "Strangeness partner of α-particle"

Baryon-Baryon force in SU(3) basis from lattice QCD

T. Inoue et al., HAL QCD Collaboration, arXiv:1612.08399v1. $[8] \otimes [8] = [27] \oplus [8_s] \oplus [1] \oplus [10^*] \oplus [10] \oplus [8_a]$

2. Calculations

(Σ NN quasibound state and its production)

Y-2N folding-model potentials

Microscopic (2N)-Y folding-model potentials

$$U_{\alpha\alpha'}(\boldsymbol{R}) = \int \rho_{\alpha\alpha'}(\boldsymbol{r}) (\overline{g}_{\alpha\alpha'}(\boldsymbol{r}_1) + \overline{g}_{\alpha\alpha'}(\boldsymbol{r}_2)) d\boldsymbol{r}$$

YN g-matrices obtained by D2'

Nucleon or transition density for NN (CDCC)

$$\rho_{\alpha\alpha'}(\boldsymbol{r}) = \langle \phi_{\alpha}^{(2N)} | \sum_{i} \delta(\boldsymbol{r} - \boldsymbol{r}_{i}) | \phi_{\alpha'}^{(2N)} \rangle$$

Coupled Bethe-Goldstone eq.

$$\begin{bmatrix} \Psi_{\Lambda} \\ \Psi_{\Sigma} \end{bmatrix} = \begin{bmatrix} \Phi_{\Lambda} \\ 0 \end{bmatrix} + \frac{Q}{e} v \begin{bmatrix} \Psi_{\Lambda} \\ \Psi_{\Sigma} \end{bmatrix}$$

Microscopic Y-(2N) folding-model potentials

 \succ The channel coupling is important to describe the YNN systems.

ΣNN quasibound states

$${}_{\Sigma}^{3}$$
He, ${}_{\Sigma}^{3}$ H, ${}_{\Sigma}^{3}$ n
(T = 1, S = 1/2)

$$(T = 1, S = \frac{3}{2})$$
 $(T = 0, 2, S = \frac{1}{2}, \frac{3}{2})$ repulsive

T. Harada, Y. Hirabayashi, PRC89(2014) 054603.

Energies and widths of ΣNN (S=1/2, T=1)

Hyperon mixing probabilities of the Σ NN states

States	Components	Probabilities (%)
³ _Σ He	$ \{pp\}\Lambda (T = 1) \\ [pn]\Sigma^+ $	2.07 54.9
$\{N_1, N_2\} = N_1 N_2 + N_2 N_1 : {}^1S_0$	$\{pn\}\Sigma^+$ $\{pp\}\Sigma^0$ $T = 1 (I_2 = 0, S_2 = 1)$	$\begin{array}{ccc} 24.7 & 99.6\% \\ 18.3 & 54.9 & (97.4\%) \end{array}$
$[N_1, N_2] = N_1 N_2 - N_2 N_1 : {}^3S_1$	$T = 1 (I_2 = 1, S_2 = 0)$ T = 2	42.5 0.45
$\frac{3}{\Sigma}n$	$\{nn\}\Lambda (T = 1)$ $[pn]\Sigma^{-}$ $\{pn\}\Sigma^{-}$ $\{nn\}\Sigma^{0}$	2.42 39.5 20.9 37.2 97.9%
	$T = 1 (I_2 = 0, S_2 = 1)$ $T = 1 (I_2 = 1, S_2 = 0)$ T = 2	39.5 56.0 2.10

<u>Production by K^- beam from ³He targets</u>

Distorted-wave impulse approximation (DWIA)

Double differential cross sections within the DWIA

$$\frac{d^2\sigma}{dE_{\pi}d\Omega_{\pi}} = \beta \frac{1}{[J_A]} \sum_{M_A} \sum_{B} |\langle \Psi_B | \hat{F} | \Psi_A \rangle|^2 \,\,\delta(E_{\pi} + E_B - E_K - E_A)$$

Production operators with zero-range interaction

$$\hat{F} = \int d\boldsymbol{r} \, \chi_{\pi}^{(-)*}(\boldsymbol{p}_{\pi},\boldsymbol{r}) \chi_{K}^{(+)}(\boldsymbol{p}_{K},\boldsymbol{r}) \sum_{j=1}^{A} \bar{f}_{(Y\pi)}(\omega_{\bar{K}N}) \delta(\boldsymbol{r}-\boldsymbol{r}_{j}) \hat{O}_{j}$$
Mesons distorted-waves

Momentum and energy transfer

Transition-amplitude for $K^-N \rightarrow \pi Y$.

$$\boldsymbol{q} = \boldsymbol{p}_K - \boldsymbol{p}_{\pi}, \qquad \omega = E_K - E_{\pi},$$

Kinematical factor

$$\beta = \left(1 + \frac{E_{\pi}^{(0)}}{E_Y^{(0)}} \frac{p_{\pi}^{(0)} - p_K^{(0)} \cos \theta_{\text{lab}}}{p_{\pi}^{(0)}}\right) \frac{p_{\pi} E_{\pi}}{p_{\pi}^{(0)} E_{\pi}^{(0)}},$$

Wavefunction of the initial state for a 3He target nucleus

$$|\Psi_A\rangle = \hat{\mathcal{A}} \left[\left[\phi_0^{(2N)} \otimes \varphi_0^{(N)} \right]_{L_A} \otimes X_{T_A, S_A}^A \right]_{J_A}^{M_A} \\ X_{T_A, S_A}^A = \left[\chi_{I_2, S_2}^{(2N)} \otimes \chi_{1/2, 1/2}^{(N)} \right]_{1/2, 1/2},$$

Wavefunctions of final states for ppY

$$\begin{split} |\Psi_B\rangle &= \sum_{\alpha} \left[\left[\phi_{\alpha}^{(2N)} \otimes \varphi_{\ell_Y}^{(Y)} \right]_{L_B} \otimes X_{Y_{\alpha},S_{\alpha}}^B \right]_{J_B}^{M_B} \\ X_{Y_{\alpha},S_{\alpha}}^B &= \left[\chi_{I_2,S_2}^{(2N)} \otimes \chi_{I_Y,1/2}^{(Y)} \right]_{Y_{\alpha},S_{\alpha}}, \end{split}$$

Continuum-discretized coupled-channel (CDCC) w.f.

$$\tilde{\phi}_{\alpha,i}^{(2N)}(\boldsymbol{r}) = \frac{1}{\sqrt{\Delta k}} \int_{k_i}^{k_{i+1}} \phi_{\alpha}^{(2N)}(k,\boldsymbol{r}) dk,$$

The momentum bin method for the pp-systems

 $\left(T_{\alpha} + v_{\alpha}^{(NN)}(\boldsymbol{r}) - \varepsilon_{\alpha}\right)\phi_{\alpha}^{(2N)}(\boldsymbol{k}, \boldsymbol{r}) = 0$

R

,

<u>Fermi-averaged amplitude for $K^-N \rightarrow \pi Y$ elementary processes</u>

Multichannel Green's function $(N \times N)$

$$\sum_{B} |\Psi_B\rangle \langle \Psi_B | \delta(E - E_B) = -\frac{1}{\pi} \text{Im}\hat{G}(E).$$

Morimatsu, Yazaki, NPA483 (1988) 493.

Inclusive spectra for the production cross sections

$$\frac{d^2\sigma}{dE_{\pi}d\Omega_{\pi}} = \beta \frac{1}{[J_A]} \sum_{M_A} S_{\pi}, \qquad S_{\pi} = -\frac{1}{\pi} \operatorname{Im} \langle F | \hat{G}(E) | F \rangle,$$

For 3He(K-, π -) reactions Im $\hat{G} = \hat{\Omega}^{(-)\dagger}(\text{Im}\hat{G}^{(0)})\hat{\Omega}^{(-)} + \hat{G}^{\dagger}(\text{Im}\hat{U})\hat{G},$

-1

$$S_{\pi^{-}} = S_{\pi^{-}}^{\{pp\}\Lambda} + S_{\pi^{-}}^{[pn]\Sigma^{+}} + S_{\pi^{-}}^{\{pn\}\Sigma^{+}} + S_{\pi^{-}}^{\{pp\}\Sigma^{0}} + S_{\pi^{-}}^{(\text{Conv})} \quad (4 \times 4)$$

$$S_{\pi}^{\alpha} = -\frac{1}{\pi} \langle F | \hat{\Omega}^{(-)\dagger} (\text{Im} \hat{G}_{\alpha}^{(0)}) \hat{\Omega}^{(-)} | F \rangle$$

$$S_{\pi}^{(\text{Conv})} = -\frac{1}{\pi} \sum_{\alpha\alpha'} \langle F | \hat{G}_{\alpha}^{\dagger} W_{\alpha\alpha'} \hat{G}_{\alpha'} | F \rangle$$

For 3He(K-,π+) reactions

$$S_{\pi^+} = S_{\pi^+}^{[pn]\Sigma^-} + S_{\pi^+}^{\{pn\}\Sigma^-} + S_{\pi^+}^{\{nn\}\Sigma^0} + S_{\pi^+}^{(\text{Conv})} \quad (4 \times 4)$$

Multichannels Green's functions

3. Results and Discussion

Inclusive spectrum in ${}^{3}\text{He}(K^{-},\pi^{-})$ reactions at 600MeV/c

Inclusive spectrum in ${}^{3}\text{He}(K^{-},\pi^{+})$ reactions at 600MeV/c

Remarks

- There is a quasibound in Σ NN systems with $J^p = 1/2^+$, L = 0, S = 1/2 state. ${}_{\Sigma}^{3}$ He, ${}_{\Sigma}^{3}$ H, ${}_{\Sigma}^{n}$
 - The pole is located as $\mathcal{E}_{\Sigma^{+}}^{(\text{pole})} {3 \choose \Sigma} \text{He} = +0.96 - i \, 4.5 \text{ MeV} \qquad (K^{-}, \pi^{-})$ $\mathcal{E}_{\Sigma^{0}}^{(\text{pole})} {3 \choose \Sigma} n = -0.58 - i \, 5.3 \text{ MeV} \qquad (K^{-}, \pi^{+})$ measured from the $d + \Sigma^{+}$ threshold.
 - The pole positions reside on the second Riemann sheet [-++] on the complex *E* plane.

 $[\mathrm{Im}k_{\{\mathrm{pp}\}\Lambda},\,\mathrm{Im}k_{[\mathrm{pn}]\Sigma^+}\,,\,\mathrm{Im}k_{\{\mathrm{pn}\}\Sigma^+}\,,\,\mathrm{Im}k_{\{\mathrm{nn}\}\Sigma0}\,]$

Inclusive spectrum by ${}^{3}\text{He}(K^{-},\pi^{+})$ reactions at 600MeV/c

BNL-E774: Barakat, Hungerford, NPA547(1992)157c

"There is no evidence for a state below Σ *-d threshold."* Why can we see no peak of the ${}^{3}{}_{\Sigma}n$ quasibound state?

Production cross sections on ${}^{3}\text{He}(K^{-},\pi^{-/+})$ reactions

Dover and Gal, PLB110(1982)433

Table 2 Production cross sections on ³He and width quenching factors Q for states in ${}_{\Sigma}^{3}$ He and ${}_{\Sigma}^{3}$ n of spin S, isospin I and core isospin T (I = 0 production is forbidden, since $I_3 = \pm 1$). $\sigma(K^-,\pi^+)$ $I(T) S Q \sigma(K^{-}, \pi^{-}) \pi^{-}$ 0(1) 1/2 3 $\Sigma[pn] \rightarrow 1(0) 1/2 1/3 3/2 |f_{p \rightarrow \Sigma^{+}}|^{2}$ $3/2 | f_{\mathbf{p} \rightarrow \Sigma^-}$ 1(0) 3/2 4/3 0

Because Σ[pn] and Σ{pn} states couple each other, we must take into account the coupling effects in the ³He(K⁻,π⁺) reaction.

Interference between K-N- π Y amplitudes in the spectra (I) For ³He(K-, π -) reactions

$$T^{(K^-,\pi^-)} \simeq f_{\Sigma^0} \langle \{pp\} \Sigma^0 |^3 \operatorname{He} \rangle + f_{\Sigma^+} \langle \{pn\} \Sigma^+ |^3 \operatorname{He} \rangle + f_{\Sigma^+} \langle [pn] \Sigma^+ |^3 \operatorname{He} \rangle$$
$$= \sqrt{\frac{1}{2}} f^{(3/2)} \langle T = 2 |^3 \operatorname{He} \rangle + \sqrt{\frac{1}{2}} f^{(1/2)}_s \langle T = 1_s |^3 \operatorname{He} \rangle + \sqrt{\frac{1}{2}} f^{(1/2)}_t \langle T = 1_t |^3 \operatorname{He} \rangle$$

dynamically admixtures due to the ΣN potential

$$= \sqrt{\frac{1}{2}} \left\{ \sqrt{\frac{1}{2}} f_{\Sigma^{+}} - f_{\Sigma^{0}} \right\} \langle T = 2|^{3} \mathrm{He} \rangle + \left\{ \left(\frac{\sqrt{3}+1}{2} \right) f_{\Sigma^{+}} + \frac{1}{2} f_{\Sigma^{0}} \right\} \langle T = 1^{(-)}|^{3} \mathrm{He} \rangle \xrightarrow{3}{\Sigma} \mathrm{He}_{g.s.}^{3} \mathrm{He}_{g.s.}^{3} + \left\{ \left(\frac{\sqrt{3}-1}{2} \right) f_{\Sigma^{+}} - \frac{1}{2} f_{\Sigma^{0}} \right\} \langle T = 1^{(+)}|^{3} \mathrm{He} \rangle \xrightarrow{3}{\Sigma} \mathrm{He}^{*}_{s.s.}^{3} \mathrm{He}^{*}_{s.}^{3} \mathrm{He}^{*}_{s.}^{3} \mathrm{He}^{*}_{s.s.}^{3} \mathrm{He}^{*}_{s.}^{3} \mathrm{He}^{*}_{s.$$

interference between $K^-p \rightarrow \pi^-\Sigma^+$ and $K^-n \rightarrow \pi^-\Sigma^0$ production amplitudes

Interference between K-N- π Y amplitudes in the spectra (II) For ³He(K⁻, π ⁺) reactions

This reduction mechanism must appear in ${}^{3}\text{He}(\text{K}^{-},\pi^{+})$ reactions !

<u>"There is no evidence for a state below Σ -d threshold."</u>

The calculated spectrum is in good agreement with the BNL-E774 data.

Remarks

The calculated inclusive spectrum of the ${}^{3}\text{He}(\text{K}^{-}, \pi^{+})$ reaction shows no peak of the ${}^{3}_{\Sigma}n$ quasibound state that is located near the Σ -threshold with the width of 10.5 MeV.

This spectrum is consistent with the BNL-E774 data.

The reason is because the interference effects caused by ${}^{3}S_{1}$ - ${}^{1}S_{0}$ admixture in the NN pair for ${}^{3}{}_{\Sigma}n$ and properties of the Σ N interactions.

Summary

There is a quasibound in ΣNN systems !!

The coupled-channel framework is very important for calculating the spectra of the ${}^{3}\text{He}(K^{-},\pi^{\mp})$ reactions.

Keyword: Hyperon-mixing

- The calculated spectra of the ${}^{3}\text{He}(K^{-},\pi^{+})$ reaction may be consistent with the E774 data due to the admixture of the NN core states. the Σ NN structure depending on the 2N-Y potential.
- Both the π^- and π^+ spectra provide valuable information to understand the nature of the ΣNN quasibound states and also the YN (ΣN) interactions.

To determine a quasibound state [+-] or cusp state [-+].

Thank you very much for your attention.