Baryon-Baryon Interactions from Lattice QCD

Takumi Doi (Nishina Center, RIKEN)

The Odyssey from Quarks to Universe

Outline

Introduction

- Theoretical framework (HAL QCD method)
- Results at heavy quark masses
- Results at physical quark masses
- Summary / Prospects

- S. Aoki, D. Kawai, T. Miyamato, K. Sasaki (YITP) T. Doi, T. Hatsuda, T. Iritani (RIKEN) F. Etminan (Univ. of Birjand) S. Gongyo (Univ. of Tours) Y. Ikeda, N. Ishii, K. Murano (RCNP) T. Inoue (Nihon Univ.)
- H. Nemura (Univ. of Tsukuba)

[HAL QCD method]

• Nambu-Bethe-Salpeter (NBS) wave function

 $\psi(\vec{r}) = \langle 0 | N(\vec{r})N(\vec{0}) | N(\vec{k})N(-\vec{k}); in \rangle$

 $(\nabla^2 + k^2)\psi(\vec{r}) = 0, \quad r > R$

- phase shift at asymptotic region

$$\psi(r) \simeq A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr}$$

Extended to multi-particle systems

M.Luscher, NPB354(1991)531 C.-J.Lin et al., NPB619(2001)467 N.Ishizuka, PoS LAT2009 (2009) 119 CP-PACS Coll., PRD71(2005)094504

S. Aoki et al., PRD88(2013)014036

Consider the wave function at "interacting region"

$$(\nabla^2 + k^2)\psi(\mathbf{r}) = m \int d\mathbf{r'} U(\mathbf{r}, \mathbf{r'})\psi(\mathbf{r'}), \quad \mathbf{r} < R$$

- U(r,r'): faithful to the phase shift by construction

• U(r,r'): E-independent, while non-local in general

- Non-locality \rightarrow derivative expansion

The Challenge in multi-baryons on the lattice

(except for very small binding energies)

Signal/Noise issue

G.S. saturation
$$\Rightarrow t \gg 1/(E_1 - E_0)$$
 (excitation energy)
 $S/N \sim \exp[-\mathbf{A} \times (\mathbf{m_N} - \mathbf{3}/\mathbf{2m_\pi}) \times \mathbf{t}]$ Parisi, Lepage(1989)

Time-dependent HAL method

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437

E-indep of potential U(r,r') → (excited) scatt states share the same U(r,r') <u>They are not contaminations, but signals</u>

Original (t-indep) HAL method

New t-dep HAL method

All equations can be combined as

$$\int d\mathbf{r}' U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t) = \left(-\frac{\partial}{\partial t} + \frac{1}{4m} \frac{\partial^2}{\partial t^2} - H_0 \right) R(\mathbf{r}, t)$$

[Exponential Improvement]

System w/ Gap

The Challenge in multi-baryons on the lattice

"Sanity Check" for results from direct method

Aoki-Doi-Iritani, arXiv:1610.09763

$$k \cot \delta(k)$$
 vs k^2 plot ERE: $k \cot \delta(k) = \frac{1}{\mathbf{a}} + \frac{1}{2}\mathbf{r}k^2 + \cdots$

Data from NPL Coll. ('15)

"Anatomy" of sympton in direct method

T. Iritani (HAL Coll.), arXiv:1610.09779

"Anatomy" of sympton in direct method

T. Iritani (HAL Coll.), arXiv:1610.09779

The fate of the direct method (check on NN)

T. Iritani et al. (HAL Coll.) JHEP1610(2016)101 + more papers in prep.

<u>Outline</u>

- Introduction
- Theoretical framework
- Results at heavy quark masses w/ HAL method
 - LQCD to EoS / Neutron stars
 - LQCD to Nuclei
 - LQCD to Exotic Hadrons
- Results at physical quark masses
- Summary / Prospects

Strong Attraction in both of $NN({}^{1}S_{0})$, $NN({}^{3}S_{1})$ (but they do not bound @ heavy quark masses)

From LQCD to EoS / Neutron Star

From LQCD to Nuclei (16O, 40Ca)

Particle Physics First-principles LQCD calc HAL Coll. @ Japan

Nuclear Physics Ab initio many-body calc Univ. of Surrey @ UK

Fate of exotic candidate Zc(3900)[udbarccbar] -- coupled channel study --

<u>Outline</u>

- Introduction
- Theoretical framework
- Results at heavy quark masses
- Results at (almost) physical quark masses
 - Nuclear forces and Hyperon forces
 - Impact on dense matter
- Summary / Prospects

Lattice QCD Setup

- Nf = 2 + 1 gauge configs
 - clover fermion + Iwasaki gauge
 - V=(8.1fm)⁴, a=0.085fm (1/a = 2.3 GeV)
 - m(pi) ~= 145 MeV, m(K) ~= 525 MeV

K.I. Ishikawa et al., PoS LAT2015, 075

- Measurement
 - NN/YN/YY for central/tensor forces in P=(+) (S, D-waves)
 - Unified Contraction Algorithm (UCA) → drastic speedup in calc

TD and M. Endres, CPC184(2013)117

<u>S = -2 channel (Coupled Channel)</u>

H-dibaryon (
$$^{1}S_{0}$$
, ΛΛ-ΝΞ-ΣΣ)

NAGARA-event (2001)

 $\Xi^- + {}^{12}\mathrm{C} \rightarrow {}_{\Lambda\Lambda}{}^6\mathrm{He} + {}^4\mathrm{He} + t$

Ξ -hypernuclei

KISO-event (2014) $\Xi^{-} + {}^{14}N \rightarrow {}_{\Lambda}{}^{10}Be + {}_{\Lambda}{}^{5}He$ B.E. = 4.38(25) MeV (or 1.11(25) MeV)

<u>H-dibaryon @ Nf=2+1, m_π=146 MeV</u>

[K. Sasaki]

off-diagonal diagonal 300 ΝΞ-ΣΣ -ΛΛ-ΣΣ -ΛΛ-ΝΞ -200 250 200 100 V(r)[MeV] V(r)[MeV] 150 0 100 -100 50 0 -200 -50 1.5 2.5 0 0.5 1 2 3 0.5 2.5 0 3 1.5 2 r[fm] r[fm] octet singlet 27plet 200 $m_{\Sigma\Sigma} = 2380 \text{MeV}$ 100 diagonal in V(r)[MeV] 0 SU(3)-irrep base 120Me\ -100 $m_{N\Xi} = 2260 \text{MeV}$ **Strong Attraction in** 30MeV 1.5 2.5 2 3 flavor-singlet channel r[fm] $m_{\Lambda\Lambda} = \bar{2}230 \mathrm{MeV}$ (400conf x 4rot x 28src, t=11)

$\Lambda\Lambda$, NE (effective) 2x2 coupled channel analysis

NΞ-Potentials [K. Sasaki]

 \iff Ξ -hypernuclei

Is interaction net attractive ? Stay tuned !

(200conf x 4rot x 20src, t=10)

<u>NN system (S = 0)</u>

Impact on dense matter

S=-2 interactions suitable to grasp whole NN/YN/YY interactions

(off-diagonal component is small)

[K. Sasaki] ²⁸

S=-2 interactions suitable to grasp whole NN/YN/YY interactions

→ LQCD YN/YY forces are used to study nuclear matter (off-diagonal component neglected)

Brueckner-Hartree-Fock (BHF) w/ Phen NN-forces (AV18) + LQCD YN/YY-forces

→ single-particle energy of hyperon in nuclear matter

Hyperon single-particle potentials

- obtained by using YN,YY forces form QCD.
- Results are compatible with experimental suggestion.

 $\begin{array}{ll} U^{\rm Exp}_{\Lambda}(0)\simeq -\,30\,, & U_{\Xi}(0)^{\rm Exp}\simeq -\,10\,, & U^{\rm Exp}_{\Sigma}(0)\geq +\,20 \quad \mbox{[MeV]} \\ & \mbox{attraction} & \mbox{attraction small} & \mbox{repulsion} \end{array}$

[T. Inoue] ³⁰

1

Hyperon onset (just for a demonstration) $x_p = 3.8\%$ 6.8% 8.9% 11% 450 450 "NSM" = "NSM" 400 400 S-wave YN only AV18 NN 350 350 No NNN Σ Preliminar 300 300 μ [MeV] μ [MeV] 250 250 2n-p 2n-p 200 200 150 150 Λ 100 100 50 50 Σ μ_n $2\mu_n - \mu_p$ Ξ $M_N \rightarrow$ 0 0 P [Pn] 2 3 3 ñ 0 P [Pn]

• "NSM" is matter w/ n, p, e, μ under β -eq and Q=0.

[T. Inoue]

4

<u>Nf=2, mπ=0.76-1.1 GeV</u>

<u>Nf=2+1, m π =0.51 GeV</u>

Magnitude of 3NF is similar for all masses Range of 3NF tend to get longer (?) for m(pi)=0.5GeV

Kernel: ~50% efficiency achieved !

<u>Summary</u>

- Baryon forces: Bridge between particle/nuclear/astro-physics
- HAL QCD method crucial for a reliable calculation
 - Direct method suffers from excited state contaminations
- The 1st LQCD for Baryon Interactions at ~ phys. point
 - m(pi) ~= 145 MeV, L ~= 8fm, 1/a ~= 2.3GeV
 - Central/Tensor forces for NN/YN/YY in P=(+) channel

Nuclear Physics from LQCD New Era is dawning !

- Prospects
 - Exascale computing Era ~ 2020
 - LS-forces, P=(-) channel, 3-baryon forces, etc., & EoS

