Bulk properties of kaonic nuclei obtained by a RMF model

Toshiki MARUYAMA¹, Toshitaka TATSUMI², Satoshi CHIBA¹ 1 JAEA, 2 Kyoto U.

Kaonic nuclei are intensively studied both experimentally and theoretically.

Due to the strong K^--N attraction,

- possibility of ppK⁻ and pppK⁻ bound states,
- very high density ($\sim 10
 ho_0$) by AMD calc

are suggested.

Kaon condensation at high density is also important for structure and dynamics of stellar objects. (K-con softens the EOS of matter, promotes the star cooling, causes inhomogeneous structure, etc.)

We study bulk properties of **kaonic nuclei** and the dependence on the K^--N interaction by using a framework which reproduces properties of nuclear matter.

Experiments

• T.Kishimoto et al

Relativistic mean-field model with kaon

Thermodynamic potential

$$\Omega = \Omega_B + \Omega_M + \Omega_K + \Omega_{\text{Coul}}$$

$$\Omega_B = \int d^3r \left[\sum_{i=p,n} \left(\int_0^{k_{Fi}} d^3k \sqrt{m_B^*{}^2 + k^2} - \rho_i \nu_i \right) \right] \quad \text{Thomas-Fermi approx.}$$

$$\Omega_M = \int d^3r \left[\frac{1}{2} (\nabla \sigma)^2 + \frac{1}{2} m_\sigma^2 \sigma^2 + U(\sigma) - \frac{1}{2} (\nabla \omega_0)^2 - \frac{1}{2} m_\omega^2 \omega_0^2 - \frac{1}{2} (\nabla R_0)^2 - \frac{1}{2} m_\rho^2 R_0^2 \right]$$

$$\Omega_K = \int d^3r \left[-K^2 \left(-m_K^*{}^2 + (E_K - V_{\text{Coul}} + g_{\omega K} \omega_0 + g_{\rho K} R_0)^2 \right) + (\nabla K)^2 \right]$$

$$\Omega_{\text{Coul}} = \int d^3r \left[-\frac{1}{8\pi e^2} (\nabla V_{\text{Coul}})^2 \right] \quad \text{Tomozawa-Weinberg term}$$

$$\nu_p = \mu_p + V_{\text{Coul}} - g_{\omega N} \omega_0 - g_{\rho K} R_0, \quad \nu_n = \mu_n - g_{\omega N} \omega_0 + g_{\rho K} R_0,$$

$$m_B^* = m_B - g_{\sigma N} \sigma, \quad m_K^*{}^2 = m_K^2 - 2g_{\sigma K} m_K \sigma \checkmark K-N \text{ Sterm}$$
Description of kaon

$$\mathbf{Free K-N scattering tude by the chiral metric for the chir$$

• Meson exchange model: linear appro of the chiral model.

Reproduces KN scatt amplitude, etc.

• The chiral model is also presented late

Free K-N scattering amplitude by the chiral model. Phys.Rep.272(1996)255.

• Parameter: $U_K(\rho_0) = -80 - -180$ MeV [Batty et al], -76 - -92 MeV ($\Sigma_{KN} = 290-450$ MeV) [Lattice QCD] ($U_K(\rho_0)$: real part of optical potential $g_{\sigma K}\sigma + g_{\omega K}\omega_0 + g_{\rho K}R_0$) Here we use $U_K(\rho_0) = -80 - -120$ MeV.

 f_{K^-p}

p scattering

1.35

Re fK-p

1.5

1.45

√s [GeV]

From extremum conditions of thermodynamic pot ${\delta\Omega\over\delta\phi_i({f r})}=0$,

$$\begin{aligned} -\nabla^{2}\sigma + m_{\sigma}^{2}\sigma &= -\frac{dU}{d\sigma} + g_{\sigma N}(\rho_{n}^{(s)} + \rho_{p}^{(s)}) - 4g_{\sigma K}m_{K}K^{2} \\ -\nabla^{2}\omega_{0} + m_{\omega}^{2}\omega_{0} &= g_{\omega N}(\rho_{p} + \rho_{n}) + 2g_{\omega K}K^{2}(E_{K} - V_{\text{Coul}} + g_{\omega K}\omega_{0} + g_{\rho K}R_{0}) \\ -\nabla^{2}R_{0} + m_{\rho}^{2}R_{0} &= g_{\rho N}(\rho_{p} - \rho_{n}) + 2g_{\rho K}K^{2}(E_{K} - V_{\text{Coul}} + g_{\omega K}\omega_{0} + g_{\rho K}R_{0}) \\ \nabla^{2}K &= \left[m_{K}^{*2} - (E_{K} - V_{\text{Coul}} + g_{\omega K}\omega_{0} + g_{\rho K}R_{0})^{2}\right]K \quad \text{(linear approx)} \\ \nabla^{2}V_{\text{Coul}} &= 4\pi e^{2}\rho_{\text{ch}} \quad \text{(charge density } \rho_{\text{ch}} = \rho_{p} + \rho_{K}) \\ \mu_{p} &= \sqrt{k_{Fp}^{2} + m_{B}^{*2}} + g_{\omega N}\omega_{0} + g_{\rho N}R_{0} + V_{\text{Coul}} \\ \mu_{n} &= \sqrt{k_{Fn}^{2} + m_{B}^{*2}} + g_{\omega N}\omega_{0} - g_{\rho N}R_{0} \\ \rho_{K} &= -2\left(E_{K} - V_{\text{Coul}} + g_{\omega K}\omega_{0} + g_{\rho K}R_{0}\right)K^{2} \end{aligned}$$

constraints:

$$\int \rho_{p,n}(\mathbf{r}) d^3 r = \text{given}, \qquad \int \rho_K(\mathbf{r}) d^3 r = -1, \qquad K(r \to \infty) = 0$$

Numerical procedure

Numerically solve coupled EOMs of fields. Klein-Gordon (linear) or sine-Gordon (chiral) for kaon.

- Assume spherical symmetry. Divide space into grid points.
- Give initial ρ_p , ρ_n , σ , ω_0 , R_0 , K.
- Adjust all fields on grid points until they fulfill the above EOMs.

All densities and fields are consistent with each other.

Choice of parameters

• Reproduce properties of both normal matter and normal nuclei.

Saturation of nuclear matter.

• Coupling constants for kaon

 $g_{\omega K} = \frac{1}{3}g_{\omega N}$, $g_{\rho K} = g_{\rho N}$, $g_{\sigma K} = 0.97 - 2.2$ ($U_K(\rho_0) = -80 - -120 \text{ MeV}$)

Related study: inhomogeneous structure of matter

Using the same (similar) framework, "pasta structure" of nuclear matter at subsaturation density, kaon condensed matter, and hadron-quark mixed phase are studied. [PRC72(2005)015802, PRC73(2006)035802, nucl-th/0605075].

Phase diagram of neutron-star matter (charge neutral (with e) and beta equilibrium). $U_K(\rho_0) = -120$ MeV. Kaonic pasta structure appears at high density. Charge screening effect is important.

Kaonic nuclei

Comparison of normal nuclei and kaonic nuclei.

- Cluster-like correlation between kaon and protons.
- Higher density ($\rho_{\rm max} \sim 1.5 \rho_0$) for light nuclei.
- Small effects for heavy nuclei.

• The density depends on U_K . But the highest density is at most $2\rho_0$.

• The difference between the chiral model and the linear model is small.

	l			
nuclei	Kaon	binding	energy	[MeV]

nucici			
	linear, $U_K = -80$ MeV	linear, $U_K = -120$ MeV	chiral, $U_K = -80$ MeV
рр	unbound	+1.7 (+11.2 - 9.5)	unbound
ppp	unbound	-0.4 (+20.5 -20.9)	unbound
ppn	-7.7 (+0.7-8.4)	-26.5 (+10.4-36.9)	-6.2
¹⁵ O	-46.2 (+3.4-49.6)	-82.6 (+12.9-95.5)	-43.7
⁴⁰ Ca	-66.9 (+2.5-69.4)	-106.6 (+9.3 - 115.9)	-64.7
¹⁰⁰ 50	-82.6 (+1.9-84.5)	-122.5 (+6.3 -128.8)	-80.9
²⁰⁰ 100	-93.2 (+1.6-94.8)	-131.4 (+4.7 - 136.1)	-91.8
	1		

Summary

• We have studied bulk properties (density profile and energy) of kaonic nuclei by a RMF model.

Results

For particular nuclei

- ppK⁻ is unbound or a metastable state (depends on the interaction).
- ppnK⁻ is more weakly bound than experimental $S^+(3140)$.
- BE of kaon in ${}^{15}\text{OK}^-$ is -50 -100 MeV.

General comments

- Cluster-like correlation between K^- and p.
- "High" density at the center. $\rho_{\rm max} \sim 2\rho_0$.
- Small effects of kaon for heavy nuclei.

What are missing in this calc

- Microscopic effects such as shell structure and clustering structure,
- description of excited states,
- decay width of kaon, etc.

But it's worth trying such a simple model to get a rough image.