

Hideko Nagahiro

JSPS Research Fellow @ RCNP, Osaka Univ.

H.N., D.Jido and S.Hirenzaki, NPA761(05)92 H.N., D.Jido, S.Hirenzaki, PRC68(03)035205 D.Jido, H.N. and S.Hirenzaki, PRC66(02)045202

H.N., S. Hirenzaki, PRL94(05)232503 H.N., M.Takizawa and S. Hirenzaki, nucl-th/0606052

formation of *n*-mesic nuclei

properties of N*(1535) resonance in medium Chiral doublet model Chiral unitary model (d,³He), (γ,p) & (π⁺,p) reactions

formation of n'-mesic nuclei

U_A(1) anomaly effect in medium Nambu-Jona-Lasinio model (γ,p) reaction η -, ω- & η '-mesic nuclei formations @ Eγ = 2.7 GeV

η -Nucleus system

works for eta-mesic nuclei

D.Jido,H.Nagahiro,S.Hirenzaki, PRC66(02)045202, H.Nagahiro,D.Jido,S.Hirenzaki, PRC68(03)035205, H.Nagahiro., D.Jido, S.Hirenzaki, NPA761(05)92, Kolomeitsev, Jido, Nagahiro, Hirenzaki, in preparation Nagahiro, Jido, Hirenzaki, in progress

- » (π^+, p) * Liu, Haider, PRC34(1986)1845 * Chiang, Oset, and Liu, PRC44(1988)738 * Chrien *et al.*, PRL60(1988)2595
- » (d,³He)
 * Hayano, Hirenzaki, Gilltzer, Eur.Phys.J.A6(1999)99
 * D. Jido, H.Nagahiro, S.Hirenzaki PRC66(2002)045202
 * Exp. at GSI (Yamazaki, Hayano group)
- » η-light nucleus system : TAPS @ MAMI (2004) (exp.), B.K.Jain et al.(thor.) etc...
- » etc... (ex. (γ,η) @ 核理研, etc...)

properties of eta meson

eta meson

»
$$m_{\eta} = 547.3 \; [\text{MeV}]$$
 » I = 0, J^P = 0⁻

»
$$\Gamma = 1.18 \; [\text{keV}] \; (2\gamma, \; 3\pi^0, \; \pi^+\pi^-\pi^0, \cdots)$$

eta-N system

Strong Coupling to N*(1535),

»
$$\Gamma_{\pi N} \sim \Gamma_{\eta N} \sim 75 [\text{MeV}]$$

$$J^{P} = \frac{1}{2}^{-1}$$

Doorway to N*(1535)

 ηNN^* system -No $I = rac{3}{2}$ baryon contamination -Large coupling constant -no suppression at threshold (s-wave coupling) $\mathcal{L}_{\eta NN^*} = g_\eta \bar{N}\eta N^* + h.c.$

eta-Nucleus system

Chiral models for N and N*

Chiral doublet model

DeTar, Kunihiro, PRD39 (89)2805 Jido,Nemoto,Oka,Hosaka, NPA671(00)471 Jido, Hatsuda, Kunihiro, PRL84(00)3252 Jido, Oka, Hosaka, PTP106(01)873 etc.

Extended SU(2) Linear Sigma Model for N and N^{*}

Lagrangian

$$\mathcal{L} = \sum_{j=1,2} \left[\bar{N}_j i \; \partial \!\!\!/ N_j - g_j \bar{N}_j (\sigma + (-)^{j-1} i \gamma_5 \vec{\tau} \cdot \vec{\pi}) N_k \right] \\ - m_0 (\bar{N}_1 \gamma_5 N_2 - \bar{N}_2 \gamma_5 N_1)$$

Physical fields

$$\begin{pmatrix} N \\ N^* \end{pmatrix} = \begin{pmatrix} \cos\theta & \gamma_5 \sin\theta \\ -\gamma_5 \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \end{pmatrix}$$

N* : chiral partner of nucleon

Mass difference

$$m_N^*(\rho) - m_{N^*}^*(\rho) = (1 - C\frac{\rho}{\rho_0})(m_N - m_{N^*})$$

* C~0.2 :the strength of the Chiral restoration at the nuclear saturation density

* reduction of mass difference

Chiral unitary model

Kaiser, Siegel, Weise, PLB362(95)23 Waas, Weise, NPA625(97)287 Garcia-Recio, Nieves, Inoue, Oset, PLB550(02)47 Inoue, Oset, NPA710(02) 354 etc.

A coupled channel Bethe-Salpeter eq.

{ $\pi^{-}p$, $\pi^{0}n$, ηn , $K^{0}\Lambda$, $K^{+}\Sigma^{-}$, $K^{0}\Sigma^{0}$, $\pi^{0}\pi^{-}p$, $\pi^{+}\pi^{-}n$ }

* the N* is introduced as <u>a resonance</u> <u>generated dynamically</u> from meson-baryon scattering.

* No mass shift of N* is expected in the nuclear medium.

 * In this study, we directly take the eta-self-energy in the ref.NPA710(02)354

η -Nucleus optical potential

^{"現代の原子核物理 ~多様化し進化する原子核の描像~"} Energy dependence of the optical potentials @ KEK, Tsukuba, 3 Aug. 2006

Chiral unitary model Inoue, Oset, NPA710(02) 354, fig.6

6

^{"現代の原子核物理 ~多様化し進化する原子核の描像~"} Energy dependence of the optical potentials @ KEK, Tsukuba, 3 Aug. 2006

子核物理 ~多様化し進化する原子核の描像~' Missing mass spectroscopy : one proton pick-up

- (d,³He) : established by studies of pionic atom formation
 - theory ... S.Hirenzaki, H.Toki, T.Yamazaki, PRC44(91)2472, ...
 - experiment ... K.Itahashi et al., PRC62(00)025202, ...
 - η -mesic nuclei formation : D.Jido, H.N., S.Hirenzaki, PRC66(02)045202, H.N., D.Jido, S.Hirenzaki, PRC68(03)035205.
- (γ, p) : smaller distortion effect
 - ω-nucleus ... Marco, Weise, PLB502(01)59
 - π -atom ... Hirenzaki, Oset, PLB527(02)69
 - n-mesic nuclei formation : H.N., D.Jido, S.Hirenzaki, NPA761(05)92.
- (π^+,p) : could be performed at J-PARC?
 - secondary meson beam, π , K, ...
 - Elementary cross section : $(d\sigma/d\Omega) \sim 2.4$ mb/sr [Crystal Ball : Prakhov *et al.*, PRC72(05)015203] **»**

@ KEK, Tsukuba, 3 Aug.

(π^+ ,p) spectra : ¹²C target

 $\eta'(958)$ -Nucleus system

H.N., S. Hirenzaki, Phys.Rev.Lett.**94**, 232503 (2005) H.N., M.Takizawa and S. Hirenzaki, nucl-th/0606052

- $\eta'(958)$ meson ... close connections with <u>U_A(1) anomaly</u>
 - » some theoretical works
 - the effects of the $U_A(1)$ anomaly on η' properties
 - > at finite temperature/density
 - T. Kunihiro, PLB219(89)363
 - R.D.Pisarski, R.Wilczek, PRD29(84)338
 - Y. Kohyama, K.Kubodera and M.Takizawa, PLB208(1988)165
 - K.Fukushima, K.Onishi, K.Ohta, PRC63(01)045203
 - P. Costa et al., PLB560(03)171, hep-ph/0408177 etc...
 - \rightarrow the possible character changes of η'
 - » a <u>poor experimental information</u> on the $U_A(1)$ anomaly at finite density
- proposal for the formation reaction of the <u>n</u>'-mesic nuclei

using the (y,p) reactions

- » $U_A(1)$ anomaly in medium from the viewpoint of "mesic nuclei"
- » the η' properties, especially <u>mass shift</u>, at finite density

Model for η and η' meson in medium

Nambu-Jona-Lasinio model with the KMT interaction

» unified treatment of the η and η' meson

$$\mathcal{L} = \bar{q}(i \not \partial - m)q + \frac{g_s}{2} \sum_{a=0}^8 \left[(\bar{q}\lambda_a q)^2 + (i\bar{q}\lambda_a\gamma_5 q)^2 \right] + g_D \left[\det \bar{q}_i (1-\gamma_5)q_j + h.c. \right]$$

explicit breaking the $U_A(1)$ sym.

SU(2) symmetric matter $ho_u=
ho_d,~
ho_s=0$ ^{"現代の原子核物理 ~多様化し進化する原子核の描像~'}@ KEK, Tsukuba, 3 Aug. 2006

we consider the SU(2) sym. matter as the sym. nuclear matter.

We can see the large medium effect even at normal nuclear density.

~ potential description

η - & η '-Nucleus optical potential

Real Part V₀

» evaluated by possible $\underline{\eta, \eta'}$ mass shift at ρ_0

$$U(r) = (V_0 + iW_0)\frac{\rho(r)}{\rho_0}$$

$$m_{\eta'}^2 \to m_{\eta'}^2(\rho) = (m_{\eta'} + \Delta m_{\eta'}(\rho))^2 \sim m_0^2 + 2m_0 \Delta m(\rho)$$

 $\Delta m(\rho) \to V(\rho(r)) = V_0 \frac{\rho(r)}{\rho_0}$

η - & η' -Nucleus optical potential

Real Part V₀

» evaluated by possible $\underline{\eta, \eta'}$ mass shift at ρ_0

$$U(r) = (V_0 + iW_0)\frac{\rho(r)}{\rho_0}$$

$$m_{\eta'}^2 \to m_{\eta'}^2(\rho) = (m_{\eta'} + \Delta m_{\eta'}(\rho))^2 \sim m_0^2 + 2m_0 \Delta m(\rho)$$

$$\Delta m(\rho) \rightarrow V(\rho(r)) = V_0 \frac{\rho(r)}{\rho_0}$$

<u>Imaginary Part W₀ for η' ~ phenomenological estimation</u>

 \rightarrow fix a coupling g

$$\rightarrow$$
 in analogy with Δ -hole model for the π -nucleus system

$$U \sim \frac{g^2}{2m_{\eta'}} \frac{\rho}{m_{\eta'} + M_N - M_{N^*} + i\Gamma_{N^*}/2} = (+77 \text{ MeV}, -8 \text{ MeV}i) \frac{\rho}{\rho_0}$$

Imaginary Part for η

$$W_0 = -5, -20 \text{ MeV} \text{ (parameter)}$$

$$W_0 = -40 \text{ MeV}$$

D.Jido,H.N.,S.Hirenzaki, PRC66(02)045202, H.N.,D.Jido,S.Hirenzaki, PRC68(03)035205,

Ν

"現代の原子核物理~多様化し進化する原子核の描像~" @ KEK, Tsukuba, 3 Aug. 2006

"現代の原子核物理~多様化し進化する原子核の描像~" @ KEK, Tsukuba, 3 Aug. 2006

Summary

- Formations of mesic nuclei
 - » in-medium properties of hadrons and QCD symmetries
 - » η -nucleus systems
 - two different chiral models
 - different physical pictures of the N*(1535) resonance
 - » η' -nucleus systems
 - New information on the U_A(1) anomaly at finite density
- experiments
 - » (d,³He) experiment for η -nucleus system @ GSI (2005?6?)
 - \rightarrow Compare the spectra of (γ ,p) and (d,³He) : complementary information
 - » (π^+,p) reaction for η -nucleus system
 - possible at J-PARC ?
 - » (γ ,p) reaction for the formation of ω -mesic nuclei @ SPring-8
 - \rightarrow information on $\eta \& \eta'$ also expected
- Future works
 - » η -mesic nuclei
 - (π^+,p) experiments by Chrien et al., (1988)
 - appropriate kinematical conditions
 - » η' -mesic nuclei
 - \rightarrow relation with other models for η & η'