

根村英克 岩崎先端中間子研究室(RIKEN)

Contents of the talk:

- Requests from superorganizer:
 - What is interesting about hypernuclei?
 - What is new topic other than the conventional nuclear physics?
- Why do you study the hypernuclear physics?The plan of my talk is:
 - ⁵He anomaly and tensor ΛN - ΣN coupling.
 - Which gives new view of hypernuclear structure beyond *core nucleus* + Λ model.
 - First-ever 5-body calculation of doubly strange hypernuclei in fully coupled channel scheme of particle basis.
 - Exciting and challenging problem toward the future experiment @J-PARC.

I. 5 He anomaly and tensor AN-EN coupling

Introduction:

Tensor interaction plays an important role for light normal nuclei.

G3RS NN potential is used.

What is the hypernuclear structure due to the presence of a Λ ?

^{\$}B(⁴He) ~ 28 MeV

 ^{\$}B_Λ(⁵He) ~ 3 MeV → ⁵He ~ α+Λ

 Rigid core+Λ picture

 ^{\$}J_c=0 → No tensor ΛN interaction

 ^{\$}I_c=0 → No ΛN-ΣN coupling

Solution State State Conventional picture acceptable? → No!
 Solution Anomalously small binding of ⁵_AHe

Anomalously small binding of

Anomalously small binding of ⁵He

A phenomenological *NV* potential reproducing B_Λ (³_ΛH), B_Λ(⁴_ΛH), B_Λ(⁴_ΛHe), B_Λ(⁴_ΛH^{*}), and B_Λ(⁴_ΛHe^{*}) values as well as the Λp total cross section, predicts (about two times) larger B_Λ(⁵_ΛHe) value than the experimental value. Dalitz, et al., NPB47, 109 (1972).

The experimental $B_{\Lambda \Lambda}({}^{5}\text{He})$ implies that *N* interaction in ${}^{5}\text{He}$ is weaker than the *N* interaction in free space. $\rightarrow {}^{5}\text{He}$ anomaly

Ab initio Approach to s-Shell Hypernuclei ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He, and ${}^{5}_{\Lambda}$ He with a ΛN - ΣN Interaction

II. Nemura,¹ Y. Akaishi,¹ and Y. Suzuki²

¹Institute of Particle and Naclear Stalles, KEK, Tsukuba 305-0891, Japan ²Department of Physics, Niigata University, Niigata 959-2181, Japan (Received 8 March 2002; published 17 September 2002)

Variational calculations for s-shell hypernuclei are performed by explicitly including Σ degrees of freedom. Four sets of YN interactions [SC976(8), SC97e(8), SC97f(8), and SC89(8)] are used. The bound-state solution of $\frac{5}{4}$ He is obtained and a large energy expectation value of the tensor $\Lambda N \cdot \Sigma N$ transition part is found. The internal energy of the ⁴He subsystem is strongly affected by the presence of a Λ particle with the strong tensor $\Lambda N \cdot \Sigma N$ transition potential.

The purpose of this work

To describe an *ab initio* calculation of ⁵_ΛHe as well as A=3, 4 hypernuclei explicitly including Σ degrees of freedom,
To conduct a new view of the ⁵_ΛHe, due to taking account of explicit Σ admixture, beyond α+Λmodel.
We would also like to discuss,

Why the *YN* interaction in ${}_{\Lambda}^{5}$ He is so weaker than that in free space or in *A*=3, 4 systems?

NN and YN potentials

Baryon-baryon interaction
Two-body system
Three-body system
Four-body system
Five-body system

Top-down approach

Many-body systems

In the nuclear physics,

NN potential is given by a modern interaction model, such as Nijmegen model.

Few-body calculation is made using the interaction.

NN and YN potentials

Baryon-baryon interaction Two-body system Three-body system Four-body system Five-body system

Many-body systems
 In the hypernuclear physics, phase-shift analysis has not been confirmed yet.

A phenomenological potential is used, which is phase-equivalent to the modern interaction model (e.g. Nijmegen model), and which reproduces the experimental data of the few-body systems.

NN and YN potentials

NN interaction:

G3RS (central+tensor)

The NN interaction reproduces the low energy NN phase shifts.

Winteraction:

SC97e(S) (central+tensor+spin-orbit; ΛV+ΣN); it is phase equivalent to the Nijmegen soft core model NSC97e.

The *YN* interaction reproduces the experimental B_{Λ} of A=3, 4 hypernuclei as well as the Λp total cross section.

Hamiltonian of a system comprising (A-1) nucleons and a hyperon

Hamiltonian (H) is divided into the internal motion of the core nucleus (H_{core}) and relative motion between the core and the hyperon (H_{Y-core}).

$$\begin{split} H &= \sum_{i=1}^{A} \left(m_{i}c^{2} + \frac{\boldsymbol{p}_{i}^{2}}{2}m_{i} \right) - T_{CM} + \sum_{i

$$\begin{split} H_{\text{core}} &= \sum_{i=1}^{A-1} \frac{\boldsymbol{p}_{i}^{2}}{2}m_{N} - \frac{\left(\sum_{i=1}^{A-1} \boldsymbol{p}_{i}\right)^{2}}{2(A-1)m_{N}} + \sum_{i

$$\begin{split} H_{Y-\text{core}} &= \frac{\pi_{Y-\text{core}}^{2}}{2\mu_{Y}} + (m_{Y} - m_{A})c^{2} + \sum_{i=1}^{A-1} v_{iY}^{(NY)}, \\ &= T_{Y-\text{core}} + V_{YN} , \\ &= T_{Y-\text{core}} + V_{YN} , \\ \mu_{Y} &= \frac{(A-1)m_{N}m_{Y}}{(A-1)m_{N} + m_{Y}}, \quad (Y = A, \Sigma). \end{split}$$$$$$

Hamiltonian of a system comprising (A-1) nucleons and a hyperon

If *rigid core* + Λis good approximation for the hypernucleus, there is no rearrangement energy;

$$\langle H_{\text{core}} \rangle_{A Z} \approx \langle H_{\text{core}} \rangle_{A-1},$$

 $\langle H_{Y-\text{core}} \rangle_{A Z} \approx -B_{\Lambda} (A Z).$

Ab initio calculation with stochastic variational method

The variational trial function must be flexible enough to incorporate both

B Explicit Σ degrees of freedom and

Higher orbital angular momenta.

 $\textcircled{P} \Psi \Sigma_i c_i \Phi_{MTMT}(\mathbf{x}; \mathbf{A}_i, u_i)$

 $\Phi_{MIM_I}(\mathbf{x}, \mathbf{A}_i, u_i)$

 $= \mathcal{A} \{ G(\boldsymbol{x}; \boldsymbol{A}_{i}) [\boldsymbol{\theta}_{(kl)_{i}}(\boldsymbol{x}; \boldsymbol{u}_{i}) \times \boldsymbol{y}_{i}]_{JM} \boldsymbol{\eta}_{M_{I}} \}$

Complete five-body treatment

Ab initio calculation with stochastic variational method Correlated Gaussian $G(\mathbf{x}; \mathbf{A}_{i}) = \exp\{-(1/2)\sum_{m < n} \alpha_{i,mn} (\mathbf{r}_{m} - \mathbf{r}_{n})^{2}\}$ $= \exp\{-(1/2)\sum_{m,n} \mathbf{A}_{i,mn} \mathbf{x}_{m} \cdot \mathbf{x}_{n}\}$ Global vector representation $\Theta_{(kl)i}(x; u_i) = v_i^{2k+l} Y_{(i)}(v_i)$, with $v_i = \sum_{m} u_i x_m$ • Spin function $\chi_i = [[[s_1 \times s_2]_{s_{12}} \times]_{s_{1234}} \times s_5]$ s:~///////+... • Isospin function $\eta_{M_I} = [[[N_1 \times N_4]_{I_{12}} \times]_{I_{1234}} \times]_{I_{M_I}}$ $\sim pnpn \Lambda + ... \text{ or } \sim pnpn \Sigma^0 + ...$

Ab initio calculation with stochastic variational method An example of spin function The case of ${}^{3}_{\Lambda}$ H, (J=1/2, T=0) $(L=0) \times (S=1/2)$ $\otimes \chi_{-1/2} = (1/\sqrt{2})$ ($|11\rangle - |11\rangle$), or $\otimes \chi_{-1/2} = (1/\sqrt{6}) (2 | 1 \rangle - | 1 \rangle)$ $(L=2) \times (S=3/2)$ $\otimes \chi_{=3/2} = | \uparrow \uparrow \rangle$

Ab initio calculation with stochastic variational method An example of isospin function The case of ${}^{3}_{\Lambda}$ H, (J=1/2, I=0) $\mathfrak{g}_{\mathcal{M}_{I}} = (1/2)(pn\Lambda) - np\Lambda)$ $\otimes \eta_{M} = (1/3)(nn\Sigma^+) + pp\Sigma^-)$ $-(1/\sqrt{6})(pn\Sigma^0 \rightarrow np\Sigma^0)$

Ab initio calculation with SVM

SVM is capable of handling the massive calculation.

Desired Computational Power

Rearrangement energy of ⁴He in ^{5}He

⁵He anomaly is resolved by taking account of explicit Σ degrees of freedom.

Rearrangement energy of ⁴He in ⁵He

Taking account of explicit Σ admixture, particularly using tensor *NV*-ΣN interaction, rearrangement energy is significant.

Rearrangement energy of ⁴He in 5 He

⟨H_{Y-core}⟩ = -7.4 MeV (with tensor *NV-ΣN* interaction)
The *YN* interaction in ⁵_ΛHe is much stronger than what the experimental B_Λ(=3.12 MeV) implies.

Rearrangement effect of ⁵He

$$H = \sum_{i=1}^{A} \left(m_i c^2 + \frac{\boldsymbol{p}_i^2}{2} m_i \right) - T_{CM} + \sum_{i
$$H_{core} = \sum_{i=1}^{A-1} \frac{\boldsymbol{p}_i^2}{2} m_N - \frac{\left(\sum_{i=1}^{A-1} \boldsymbol{p}_i\right)^2}{2(A-1)m_N} + \sum_{i$$$$

Rearrangement effect of ⁵He

Characteristic Conventional Picture of 5 He

Right: A new picture due to strong ΛN-ΣN tensor coupling

Summary

Since Five-body calculation of ${}_{\Lambda}^{5}$ He was performed with a *YN* interaction explicitly including Σ degrees of freedom.

This is the first *ab initio* calculation of ${}_{\Lambda}^{5}$ He using tensor *N*- Σ *N* interaction which gives a bound-state solution.

A new view of ${}_{\Lambda}^{5}$ He: We found the large rearrangement energy for the core nucleus in ${}_{\Lambda}^{5}$ He; $\langle H_{core} \rangle = 4.7 \text{ MeV}$

 $-B_{\Lambda} \neq \langle H_{Y-\text{core}} \rangle = -7.4 \text{ MeV}$

Tensor *N*-Σ*N* interaction is strongly attractive and affects the internal energy of the core nucleus.

⁶ ⁴He is no longer rigid in interacting with a Aparticle.

II. First-ever 5-body calculations of doubly strange hypernuclei in fully coupled-channel scheme of particle basis

The purpose of this work

- To describe the first-ever 5-body calculation of doubly strange hypernuclei $({}_{\Lambda\Lambda}{}^{5}H - {}_{\Xi}{}^{5}H - {}_{\Lambda\Sigma}{}^{5}H - {}_{\Sigma\Sigma}{}^{5}H$ and ${}_{\Lambda\Lambda}{}^{5}He - {}_{\Xi}{}^{5}He - {}_{\Lambda\Sigma}{}^{5}He - {}_{\Sigma\Sigma}{}^{5}He$) in fully coupled channel scheme of particle basis.
- Solution If the Ξ-, $\Lambda\Sigma$ -, and $\Sigma\Sigma$ -hypernuclear states exist, they must decay via $\Lambda\Lambda$ - $N\Xi$ - $\Lambda\Sigma$ - $\Sigma\Sigma$ and ΛN - ΣN strong interaction.
- Solution \mathbb{E} How can we calculate the Ξ-, ΛΣ-, and ΣΣ-hypernuclear states?

The strategies to solve the problem How can we calculate the

- Ξ -, $\Lambda\Sigma$ -, and $\Sigma\Sigma$ -hypernuclear states?
- B Let us consider the Ξ -hypernucleus as an example.
 - Single channel calculation of each particle basis, such as $ppnn\Xi^-$ or $ppnn\Xi^0$:
 - **This** makes bound state of the Ξ -hypernuclei, if the ΞN potential is so attractive, but not realistic.
 - Fully coupled channel calculation

 \otimes Mixed state among $ppnn\Xi^- \leftrightarrow pnn\Lambda\Lambda$

NN, YN and YY potentials *NN* **interaction: Minnesota potential**

The NN interaction reproduces the low energy NN scattering data, and also reproduces reasonably well both the BEs and sizes of ²H, ³H, ³He, and ⁴He.

Winteraction: D2' potential

The YN interaction reproduces the experimental B_Λ of A=3-5 hypernuclei; Free from the ⁵_ΛHe anomaly.
 YY interaction: Simulating Nijmegen model (mND_S)

Fully coupled channel; ${}^{1}S_{0}$ ${}^{3}S_{1}$ hard-core radius $I=0 \quad \Lambda\Lambda-N\Xi-\Sigma\Sigma$ NE
ND: $r_{c}=(0.56, 0.45) \text{ fm}$ $I=1 \quad N\Xi-\Lambda\Sigma$ NE- $\Lambda\Sigma-\Sigma\Sigma$ PRL94, 202502 (2005) $I=2 \quad \Sigma\Sigma$

Ab initio calculation of S=-2 hypernucleus ⁶He in a fully coupled channel scheme

Complete six-body + Full-coupled channel treatment

Fully Coupled Channel Approach to Doubly Strange s-Shell Hypernuclei

Complete six-body

Full-coupled channel treatment

formation of ${}_{\Lambda\Lambda}{}^4_{\Lambda}$ H, in accordance with our earlier predictions [13,14] that ${}_{\Lambda\Lambda}{}^4_{\Lambda}$ H would exist as a particle stable bound state against strong decay. If this is the case, the

Preliminary results

Single channel calculation of ppnnΞ⁻:
We obtained a bound state with B₋ = 0.55 MeV.

Fully coupled channel calculation:
We found that there are five states below the ⁴He+Ξ⁻ threshold, so far.
The lowest is the ground state of ⁵_{ΛΛ}⁵H.
Then, we calculate the probabilities of ΛΛ- and Ξ-channels.

Preliminary results

- ⁵He -- ⁵₂He -- ⁵₂₂He -- ⁵₂₂He:
 Single channel calculation of *ppnn*Ξ⁰:
 We obtained no bound state, so far.
- Fully coupled channel calculation:
 We found that there are three states below the ⁴He+Ξ⁰ threshold, so far.
 The lowest is the ground state of ⁵_{ΛΛ}⁵He.
 Then, we calculate the probabilities of ΛΛ- and Ξ-channels.

Discussions about E-hypernuclei

- The present study uses mND, *YY* potential,
 - which well reproduces the $\Delta B_{\Lambda\Lambda}$ of the Nagara event, and which is consistent with the recent experimental data of Ξ -nucleus potential.
- The preliminary calculations seem to imply that
 a ±-hypernuclear state exists
 below the ⁴He+±⁻ or ⁴He+±⁰ threshold.
- More precise calculations must be made in the fully coupled channel scheme:
 - Correct energies and widths.

[⊕] **⊡**Complex scaling method with SVM.

Summary

We calculated the first-ever 5-body problems of 5H and 5He in fully coupled-channel scheme of particle basis, though the present results are still preliminary. The present result seems that the =-hypernuclear state exists below the "He+= threshold. If so, the coupling effects play significant roles to make a bound state of _5He, because the single channel calculation makes no bound state

Questions: Summary contd. :

- What is interesting about hypernuclei?
- What is new topic other than the standard nuclear physics?
- Why do you study the hypernuclear physics?
- Answers:
 - The goal of nuclear physics is to understand the strong interaction and the strongly interacting world. The hypernuclear physics gives a new point of view to see our world.
 - The strangeness may play a important role as a bridge with the traditional nuclear physics meeting the hadron physics.

 - The experimentally small B_{Λ} value does not mean that the Λ is just the spectator in the system. The Λ influences the internal structure of the core nucleus. This is due to the pion exchange between the baryons.
 - The multistrange hypernucleus can be a Laboratory for the study of hyperon-hyperon interaction, which is hardly performed by the real scattering experiment. The precise few-body calc helps this approach.

In the future study: What is the structure of 6 He? $B(total)=B({}^{4}\text{He})+B_{\Lambda}({}^{5}\text{He})$

A conventional picture: B(total) $= B(^{4}\text{He}) + B_{\Lambda}(^{5}\text{He})$ = 28 + 3 MeV.

A new picture: B(total) $= (B(^{4}\text{He}) - \Delta E_{c}) + (B_{\Lambda}(^{5}\text{He}) + \Delta E_{c})$ = 23 + 8 MeV.

In the future study: What is the structure of ⁶He? $B(total)=B(^{4}He)+2B_{\Lambda\Lambda}(^{5}He)+\Delta B_{\Lambda\Lambda}(^{6}He)$

A conventional picture:
B(total)

 $= B({}^{4}\text{He}) + 2B_{\Lambda}({}^{5}\text{He}) + \Delta B_{\Lambda}({}^{6}\text{He})$

 $= 28 + 2 \times 3 + 1 = 35$ MeV.

• A conjecture: $\Delta E_c({}^{6}_{M}\text{He}) = 2\Delta E_c({}^{5}_{\Lambda}\text{He}),$

B(total)

 $= (B({}^{4}\text{He}) - 2\Delta E_{c}({}^{5}_{\Lambda}\text{He})) + 2(B_{\Lambda}({}^{5}_{\Lambda}\text{He}) + \Delta E_{c}({}^{5}_{\Lambda}\text{He}))$

 $+\Delta B_{\rm M}({}^{6}_{\rm M}{\rm He})$

 $= 18+2\times8+1 = 35 \text{ MeV},$ (or $= 19+2\times7+2 = 35 \text{ MeV}$)