

橋本慎太郎

河野通郎^A,緒方一介,渡辺幸信^B,河合光路 九大理,九歯大^A,九大総理工^B

KEK 研究会「現代の原子核物理 - 多様化し変化する原子核の描像」 2006 年 8 月 1 日~8 月 3 日

Introduction

Strangeness exchange reaction

Multi-step processes

SemiClassical Distorted Wave model

Results

Summary and future work

SIntroduction

◆ ストレンジネス物理: <u>/ヽイ/パー</u>核研究

-1

0

+1 I_3

SIntroduction

◆ ストレンジネス物理: パイパー 核研究

◆ ハイペロン-核子間相互作用

◆ ハイペロン-ハイペロン間相互作用

中性子数

Strangeness exchange reaction

◆ Ξ(S = −2)ハイペロン生成反応

Strangeness exchange reaction

Strangeness exchange reaction

Strangeness exchange reaction ◆ Ξ(<u>S</u> = −2)ハイペロン生成反応 $^{12}C(K^-, K^+)$ K^+ K^- → Observed Distortion Distortion 包括的反応過程 ☆: 素過程 $K^- + p \rightarrow \Xi^- + K^+$ Unobserved pTarget nucleons 12 反応解析 (半古典歪曲波模型) 三の一体場ポテンシャル (三-核子間相互作用)

◆ (K⁻, K⁺):ダブルストレンジネス交換反応

◆ 1段階過程

• $K^- + p \rightarrow \Xi^- + K^+$

◆ (K⁻, K⁺): ダブルストレンジネス交換反応

◆ 2段階過程

• $K^- + n \rightarrow n' + K^{-'} \Rightarrow K^{-'} + p \rightarrow \Xi^- + K^+$

♦ (K⁻, K⁺): ダブルストレンジネス交換反応

◆ 2段階過程

• $K^- + n \rightarrow n' + {K^-}' \Rightarrow K^-' + p \rightarrow \Xi^- + K^+$

• $K^- + p \rightarrow \Sigma^- + \pi^+ \Rightarrow \pi^+ + n \rightarrow \Lambda + K^+$

Semi-Classical Distorted Wave model (SCDW)

◆ 半古典歪曲波模型

- 包括的 (p, p') や (p, n) を調節パラメーターなしで定量的に記述
- 多段階過程計算を比較的容易に定式化
 - Y. L. Luo and M. Kawai, PLB 235, 211 (1990); PRC 43, 2367 (1991).
 - M. Kawai and H. A. Weidenmüller, PRC 45, 1856 (1992).
 - Y. Watanabe, R. Kuwata, Sun Weili, M. Higashi, H. Shinohara,
 M. Kohno, K. Ogata and M. Kawai, PRC 59, 2136 (1999).
 - K. Ogata, M. Kawai, Y. Watanabe, Sun Weili and M. Kohno, PRC 60, 054605 (1999).
 - Sun Weili, Y. Watanabe, M. Kohno, K. Ogata and M. Kawai, PRC 60, 064605 (1999).

Semi-Classical Distorted Wave model (SCDW)

◆ 半古典歪曲波模型

Double differential cross section (DDX) for $^{40}\mathrm{Ca}(p,p')$ at 392 MeV

[K. Ogata et al., in preparation.]

Cross section formula for 1-step process

Cross section formula for 1-step process

DWBA 展開
$$\frac{d^2\sigma}{dE_f d\Omega_f} = rac{d^2\sigma^{(1)}}{dE_f d\Omega_f} + rac{d^2\sigma^{(2)}}{dE_f d\Omega_f} + \cdots$$

包括的断面積 (1 段階過程)

$$egin{aligned} &rac{d^2 \sigma^{(1)}}{dE_f d\Omega_f} = C \sum_{eta,lpha} ig| \langle \chi_f \phi_eta \mid v \mid \chi_i \phi_lpha
angle ig|^2 \, \delta(arepsilon_eta - arepsilon_lpha - E_i + E_f) \ &= C \sum_{eta,lpha} \int\!\!dr \, \chi_f^*(r) \phi_eta^*(r) v(r) \chi_i(r) \phi_lpha(r) \ & imes \int\!\!dr' \, \chi_f(r') \phi_eta(r') v^*(r') \chi_i^*(r') \phi_lpha^*(r') \ & imes \delta(arepsilon_eta - arepsilon_lpha - E_i + E_f) \end{aligned}$$

現代の原子核物理 -多様化し変化する原子核の描像 - p.7/12

Section formula for 1-step process

局所半古典近似:
$$\chi_c(r') \cong \chi_c(r) e^{ik_c(r) \cdot s}$$
 $(r' = r + s)$
 $K(r, r') = \sum_{\beta, \alpha} \phi_{\beta}^*(r) \phi_{\beta}(r') \phi_{\alpha}(r) \phi_{\alpha}^*(r')$
 $\times \delta(\varepsilon_{\beta} - \varepsilon_{\alpha} - E_i + E_f)$: s に関して短距離
 $\int d^2 \sigma^{(1)}$
 $dE_f d\Omega_f = C \sum_{\beta, \alpha} \int dr \int dk_{\alpha} |\chi_f(r)|^2 |\chi_i(r)|^2 |\phi_{\beta}(r)|^2 \Phi_{\alpha}(r, k_{\alpha} + |v(r)|^2 \delta(k_f(r) - k_i(r) + k_{\beta}(r) - k_{\alpha}))$
 $\times \delta(\varepsilon_{\beta} - \varepsilon_{\alpha} - E_i + E_f)$

Cross section formula for 2-step processes

$$egin{aligned} rac{d^2 \sigma^{(2)}}{dE_f d\Omega_f} &= C \int dE_m \iint dr_1 dr_2 \left| \chi_f(r_2)
ight|^2 \left| \chi_i(r_1)
ight|^2 \ & imes \iint dk_{lpha_2} dk_{eta_2} \left| v_2
ight|^2 \delta(k_{eta_2} - k_{lpha_2} + k_f(r_2) - \kappa_m(r)) \ & imes \delta(E_f - E_m + arepsilon_{eta_2} - arepsilon_{lpha_2}) \ & imes \left(rac{\mu}{2\pi\hbar^2}
ight)^2 rac{e^{-2\gamma_m(r)} |r_2 - r_1|}{|r_2 - r_1|^2} \ & imes \iint dk_{lpha_1} dk_{eta_1} \left| v_1
ight|^2 \delta(k_{eta_1} - k_{lpha_1} + \kappa_m(r) - k_i(r_1)) \ & imes \delta(E_m - E_i + arepsilon_{eta_1} - arepsilon_{lpha_1}) \end{aligned}$$

 $\Im \equiv$ production reaction analysis

◆ 12 C 標的 (K^-,K^+) 反応 (入射運動量 1.65 GeV/c)

実験值:T. lijima et al., NPA 546, 588 (1992).

 $\mathfrak{S} \Lambda$ production reaction analysis

実験值:H. Noumi et al., PRL 89, 072301 (2002) and P.K. Saha et al., PRC 70, 044613 (2004).

[M. Kohno et al., submitted to PRC.]

Summary and future work

- ◆ 入射運動量 1.65 GeV/c における Ξ 生成 ¹²C(K[−], K⁺) 反応 を半古典歪曲波模型 (SCDW) を用いて解析した。
 - SCDW による計算結果は、エネルギー依存性に関しては実験値 を再現しているが、その絶対値に関しては 50% ほど過小評 価している。

過小評価の傾向は、 Λ 生成 $^{12}\mathrm{C}(\pi^+,K^+)$ 反応でも同様である。

より定量的な解析を行うために多段階過程の評価を行う。

過小評価の原因を探る。素過程の媒質効果?