⁶He 核力クーロン力分解反応解析

松本 琢磨 (理研)

江上智晃,緒方一介,井芹康統¹,八尋正信,上村正康 (九大理,¹千葉経済短大)

現代の原子核物理-多様化し進化する原子核の描像-8/2 (2006)

Region of Interest: Neutron & Proton Rich

Breakup reactions have played key roles in investigating properties of weakly bound nuclei.

Introduction : Purpose of This Study

- New Approach
 - Treat four-body breakup
 - Fully quantum-mechanical
- **Non-adiabatic**
- Non-perturbative

The Method of Continuum-Discretized Coupled-Channels (CDCC)

- Developed by Kyushu group about 20 years ago M. Kamimura et al., PTP Suppl. 89, 1 (1986).
- Treat the breakup states explicitly: non-adiabatic & non-perturbative calc.
- Applied to only three-body breakup reactions

We develop CDCC to describe four-body breakup processes

[→] Four-Body CDCC

離散化チャネル結合法 (CDCC)

全波動関数

CC 方程式の型

$$\Psi = \sum_{\mathbf{B}} \Phi_{\mathbf{B}} \chi_{\mathbf{B}} + \int d \epsilon \Phi(\boldsymbol{\epsilon}) \chi(\boldsymbol{\epsilon})$$

連続無限個の 連立微積分方程式

 $\Psi^{\mathbf{CDCC}} = \sum_{\mathbf{B}} \Phi_{\mathbf{B}} \chi_{\mathbf{B}} + \sum_{n}^{N} \hat{\Phi}_{n}(\epsilon_{n}) \chi_{n}(\epsilon_{n})$ 有限個の 連立微分方程式

POINT: 連続状態を離散化した状態で記述すること (その正当性)

4体離散化チャネル結合法(6He分解反応)

全波動関数の展開
Ψ = Φ₀χ₀(**R**) + ∑^N Φ_i(ε_i)χ_i(ε_i, **R**)
チャネル結合方程式 H = K_{**R**} + U + H_{**p**}
[K_{**R**} + U_{ii}(**R**) - (E - ε_i)] χ(ε_i, **R**) = - ∑_{i \neq j} U_{ij}(**R**)χ_j(ε_j, **R**)

チャネル結合ポテンシャル $U_{ij} = \langle \Phi_i | U | \Phi_j \rangle$

ガウス型基底関数展開法

ガウス型基底関数展開法: Gaussian Expansion Method E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 ('03)

● 基底関数

 $\psi_{IM} = \sum_{i,c} \sum_{\ell \lambda \Lambda S} A_{i\ell \lambda \Lambda S}^{(c)} y_c^{\ell} r_c^{\lambda} e^{-\left(\frac{y_c}{y_i}\right)^2} e^{-\left(\frac{r_c}{r_i}\right)^2} \\ \left[\left[Y_{\ell}(\Omega_{y_c}) \otimes Y_{\lambda}(\Omega_{r_c}) \right]_{\Lambda} \otimes \left[\eta_{n_1} \times \eta_{n_2} \right]_{S} \right]_{IM} \\ \text{各座標に対する角運動量} \ell, \lambda については、ある上限値までとる。$

⁶He Nuclear Breakup

System : ⁶He+¹²C scattering at 229.8 MeV

クーロン障壁 << 入射エネルギー

Breakup Continuum States of 6He

Elastic Cross Section (6He+12C @ 38.3MeV/A)

Breakup Cross Section (6He+12C @ 38.3MeV/A)

6 He Nuclear and Coulomb Breakup System : 6 He+ 209 Bi scattering at 19 and 22.5 MeV クーロン障壁 \approx 入射エネルギー

Di-neutron Model 計算

In a recent work, Keeley *et al.* analyzed ⁶He+²⁰⁹Bi scattering near Coulomb barrier energies by the continuum-discretized coupled-channels method (CDCC).

Breakup Continuum States of 6He

- **Coupling Potential : Single-Folding**
 - ⁴He–²⁰⁹Bi potential
 - · Barnet and Lilley, PRC 9, 2010.

n-209Bi potential

· Koning and Delaroche, NPA 713, 231.

Angular Distribution of Ealstic Cross Section

The four-body CDCC calculation well reproduces the data, although the three-body CDCC calculation underestimates in the angular range 50°–100°

Total Reaction Cross Section

E1 Excitation Strength B(E1)

Summary & Future Work

- これまで3体分解反応(入射核2体系)の解析に用いられてきた離散化チャネル結合法を4体分解反応の解析に拡張。
- 4 体離散化チャネル結合法により⁶He 分解反応の解析を行ない 実験値を良く再現することができた。
- 特にクーロン分解 (標的²⁰⁹Bi)の場合、⁶He を dineutron 模型で 記述する解析では実験を再現できない。→⁶He を 3 体系で記述 する必要がある。

今後の展望

- 離散的 S 行列の連続化 → 江上
- ¹¹Li の分解反応の解析

ガウス型基底関数展開法

ガウス型基底関数 $\varphi_{i\ell}(r) = N_{i\ell}r^{\ell} \exp\left[-\left(\frac{r}{r_i}\right)^2\right], r_i = r_1a^{i-1}$:等比級数

ガウス型基底関数展開法: Gaussian Expansion Method E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 ('03)

⁴He 4 核子系の基底状態と励起状態計算
E. Hiyama, B. F. Gibson and M. Kamimura, Phys. Rev. C70, 031001 ('04)

連続状態の離散化方法 其の1

momentum-bin 法 (一般的に用いられているが入射核が2体系のみ)

POINT: 連続状態の波動関数が必要な為、入射核3体系は困難

連続状態の離散化方法 其の2

pseudo-state 法
 (入射核が3体系または4体系でも計算可能)

入射核の内部ハミルトニアンの固有値、固有状態を 変分法を用いて計算を行なう。

レイリー・リッツの変分法

$$\psi = \sum_{n} C_{n} \varphi_{n}$$
 $\varphi_{n} : L^{2} 型の関数$
$$\left[\left(H_{nn'} \right) - \epsilon \left(N_{nn'} \right) \right] = 0$$

POINT: 入射核 3 体系でも φ_n として有利な関数を選ぶこと で離散的な連続状態を求めることができる

6He 基底状態

Elastic Cross Section (6He+12C @ 3MeV/A)

Breakup Cross Section (6He+12C @ 3MeV/A)

Smoothing Procedure

Validity of the PS Method for Elastic I

$d+^{58}$ Ni scattering at 80 MeV

Discretized State of Deuteron

Validity of the PS Method for Breakup I

The Number of Discretized States

The Av Method

- 30 for s-wave state
- 30 for d-wave state

The PS	Method
Rea	l-Range
18	for s-wave state
18	for d-wave state
Con	nplex-Range
16	for s-wave state

17 for d-wave state

Validity of the PS Method for Elastic II

Discretized State of ⁶Li

Validity of the PS Method for Breakup II

The Number of Discretized States The Av Method 20 for s-wave state for resonance 30 10 for non-resonance The PS Method Real-Range for s-wave state 21 22 for d-wave state **Complex-Range** for s-wave state 21 for d-wave state 22

Solving with a box condition, continuum is discretized.

- consist of a complete set within a finite modelspace
- similar state obtained by diagonalization
- Three-body continuum can be obtained by diagonalization of Hamiltonian.
 - Gaussian Expansion Method

E. Hiyama, Y. Kino and M. Kamimura, Prog.Part. Nucl. Phys. 51, 223 ('03)

⁶He structure of The Ground State

Dynamical Polarization Potential

Coupled-Channels Equation

$$[T_R + V_{\gamma_0 \gamma_0}(\mathbf{R}) - (E - \epsilon_{\gamma_0})] \chi_{\gamma_0}(\mathbf{R}) = -\sum_{\gamma \neq \gamma_0} V_{\gamma_0 \gamma}(\mathbf{R}) \chi_{\gamma}(\mathbf{R})$$

 $[T_{\mathbf{R}} + V_{\gamma_0 \gamma_0}(\mathbf{R}) + U_{\mathrm{DP}}(\mathbf{R}) - (E - \epsilon_0)] \chi_{\gamma_0}^{(J)}(\mathbf{R}) = 0$

E _{in} [MeV/A]	$\sigma_{ m R}$ [mb]	$\sigma_{ m BU}$ [mb]	$oldsymbol{\sigma}_{\mathbf{BU}}^{0^+}$ [mb]	$oldsymbol{\sigma}_{\mathbf{B}\mathbf{U}}^{2^+}$ [mb]
3	1640	72	14	58
38.3	1020	138	30	108

Breakup Cross Section to 2⁺ **resonance state**

• ⁶He+¹²C scattering @ 3 MeV/A : $\sigma_{BU}^{res} = 36 \text{ [mb]}$

$$rac{\sigma_{
m BU}^{
m res}}{\sigma_{
m BU}} \sim 50\%$$

• ⁶He+¹²C scattering @ 38.3 MeV/A : $\sigma_{BU}^{res} = 42 \text{ [mb]}$

$$rac{\sigma_{
m BU}^{
m res}}{\sigma_{
m BU}} ~\sim~ 30\%$$

Total Reaction Cross Section

Energy Dependence of N_I

