Exclusive Electroproduction of Charmonium at HERA

Tetsuo Abe

Department of Physics, University of Tokyo

on behalf of &

— Outline —

- [1] Introduction
- [2] Theories for J/ψ production
- [3] Motivation of this measurement
- [4] Event selection
- [5] Results
- [6] Conclusions

[1] Introduction

Exclusive Electroproduction of J/ψ at HERA

	Measured kinematical variables			
Q^2	=	$-q^{2}$	=	$-(k - k')^2$
W^2	=	$(q + P)^2$	=	$\left\{ (k - k') + P \right\}^2$
t	=	$(P'-P)^2$	=	$\left\{k - (k' + p_{J/\psi})\right\}^2$

[2] Theories for J/ψ production

Vector Dominance Model + Regge theory

• $\sigma(W) \propto W^{0.22}$ (soft IP exchange)

•
$$\sigma(Q^2) \propto \frac{1}{\left(Q^2 + M_{J/\psi}^2\right)^2}$$

- explains soft VM production, i.e. light VM photoproduction(PhP).
- does not work for J/ψ PhP.

• needs hard scale: $M_{J/\psi}^2(m_c^2)$, Q^2 .

•
$$\sigma \propto \left\{ \overline{x} \cdot g(\overline{x}, \overline{q}^2) \right\}^2$$

 $\overline{x} = \frac{Q^2 + M_{J/\psi}^2}{W^2} \cong 10^{-4} \sim 10^{-2}$
 $\overline{q}^2 = \frac{Q^2 + M_{J/\psi}^2}{4} \cong 3 \sim 16 \, GeV^2$

• $\sigma(W), \sigma(Q^2)$ are related to gluon PDF.

[3] Motivation of This Measurement

- Two hard scales: $M^2_{J/\psi}(m^2_c)$ and Q^2
 - \rightarrow Calculable with pQCD
 - \rightarrow Test of gluon PDFs
- W-dependence: $\sigma(W; Q_0^2) \sim W^{\delta(Q_0^2)}$
 - Interplay of the two hard scales: $M_{J/\psi}^2$ and Q^2

•
$$Q^2$$
-dependence: $\sigma(Q^2) \sim \frac{1}{(Q^2 + M_{J/\psi}^2)^n}$?

- Charm suppression in low- Q^2 \rightarrow Connection to PhP

- Ratio to
$$\rho^0$$

 \rightarrow Compared to SU(4) expectation:
 $\rho^0: \omega: \phi: J/\psi = 9:1:2:8$
- $R(Q^2) = \sigma_L/\sigma_T$: How does it rise?

[4] Event Selection

H1 (Publ.)

ZEUS (Prelim.)

 $27pb^{-1}$ taken in 1995-97 $75pb^{-1}$ taken in 1996-99

Common selection

- A scattered e^{\pm} in the calorimeter
- 2(+1) tracks in Central Tracking Detector (CTD)
- Elasticity: no other tracks in CTD, etc.

Di-muon candidate

Di-electron candidate

[5] Results

W-dependence

- *W*-slopes are consistent with that of PhP.
- W-slopes are agreement with those from pQCD within the errors.

Q^2 -dependence

- Rising with Q^2 (\leftarrow charm suppression)
- Ratio at $Q^2 = 53 GeV^2$ is consistent with SU(4) expectation.

T. Abe (Univ. of Tokyo)

$$R(Q^2) = \frac{\sigma_L}{\sigma_T}$$

Assuming SCHC,

$$R = \frac{r_{00}^{04}}{\epsilon(1 - r_{00}^{04})} \quad \left(\epsilon \stackrel{\text{def}}{\equiv} \frac{\Gamma_L}{\Gamma_T} \sim 1\right).$$

 r_{00}^{04} : Spin density matrix element (K. Schilling and G. Wolf, Nucl. Phys. **B61** (1973) 381-413)

$$\frac{d\sigma}{d\cos\theta_h} \propto 1 + r_{00}^{04} + (1 - 3r_{00}^{04})\cos^2\theta_h$$

[5] Conclusions

- Exclusive J/ψ electroproduction has been studied at HERA by both H1 and ZEUS.
- W-slopes
 - are consistent with that of PhP, and
 - are agreement with those from pQCD within the errors.
- Q^2 -slope
 - is farily well-described with pQCD.
 - The extrapolation of the fit with $1/(Q^2+M_{J/\psi}^2)^n$ overshoots PhP points. (\leftarrow **ZEUS data**)
 - The ratio to ρ^0 is rising, and is consistent with SU(4) expectation at $Q^2 = 53 \, GeV^2$.
- $R = \frac{\sigma_L}{\sigma_T}$ is rising much slower than R_{ρ^0} , but the slope is consistent if the suppression factor: $m_{\rho}^2/m_{J/\psi}^2$ is multiplied.