GRAPE
GRACE for Proton-Electron interactions

Tetsuo Abe
Department of Physics, University of Tokyo

in collaboration with

J. Fujimoto, T. Ishikawa, Y. Kurihara
High Energy Accelerator Research Organization (KEK)

K. Kato, T. Watanabe
Department of Physics, Kogakuin University

—— Outline ———

[1] Introduction
[2] The GRACE System
[4] Program Structure
[5] Examples of Calculations
[6] Summary and Prospects
[1] Introduction

The actual motivation of the GRAPE project

Need of a new dilepton generator for HERA physics

(→ EW diagrams)

Significant background for exclusive $J/\psi, \gamma$ productions, CC, LFV, W production, etc.
Electroweak (EW) Dilepton Production

(a) Bethe-Heitler (type) diagrams

(b) QED Compton type diagrams

(c) Z^0 on/off-shell production

Workshop on ep Interactions with High E_T
Existing generators for dilepton production in ep collisions

<table>
<thead>
<tr>
<th></th>
<th>LPAIR*</th>
<th>TRIDENT†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation</td>
<td>Exact ME with numerically stable formula to avoid gauge cancellations</td>
<td>Exact ME with REDUCE</td>
</tr>
<tr>
<td>Numerical stability</td>
<td>Stable at any phase space point</td>
<td>Unstable at low scattering angles</td>
</tr>
<tr>
<td>Included diagrams</td>
<td>Bethe-Heitler (BH) of two-pthon</td>
<td>BH + CO (QED) including ee interference in ee channel</td>
</tr>
<tr>
<td>Weight</td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
</tbody>
</table>

*, †: Please see PHYSICS at HERA vol.3

We want to have **an event generator** with

- the exact ME calculation,
- all related diagrams,
- and numerical stableness.
We suffer from

- a large number of diagrams (at most 48),
- various singularities,
- numerical cancellations.

The **automatic** calculation by GRACE
[2] The GRACE System

— Automatic calculation of Feynman amplitudes —

Successful experience in e^+e^- physics (eg. LEP2)

1. Specification of a model file, order of perturbation, and initial/final state particles
2. Generation of all Feynman diagrams
3. Generation of FORTRAN source code to calculate the Feynman amplitudes \implies Exact ME calculation
4. Integration, event generation by BASES/SPRING program \implies Unweighted events
In an input file
- Model: SM
- EW = 4, QCD = 0
- Initial = \{e^+, \mu\}
- Final = \{e^+, \mu^+, \mu^-\}

of generated diagrams
- 109 in covariant gauge
- 58 in unitary gauge

produced by GRACEFIG

T. Abe (Univ. of Tokyo) Workshop on ep Interactions with High \(E_t\) Mar. 28 2000
In an input file

- Model: MSSM with \mathcal{R}_p
- EW = 4, QCD = 0
- Initial = $\{e^+, d\}$
- Final = $\{e^+, d, \nu_e, \bar{\nu}_e\}$

of generated diagrams

- 237 in covariant gauge
- 164 in unitary gauge

etc...

So far GRACE has only fundamental particles.

Calculation of the Proton Vertex

\[M_2 \text{ def } \{ (p^+ + p^-) - (e^+ + e^-) \}^2 \]

\[Q_p^2 \text{ def } \{ (p^+ + p^-) - (e^+ + e^-) \}^2 \]

\[Q_{\text{had}}^2 \text{ def } \{ (p^+ + p^-) - (e^+ + e^-) \}^2 \]

\[M_{\text{had}} \text{ def } \{ (p^+ + p^-) - (e^+ + e^-) \}^2 \]

\[M_{\text{had}} = M_p \]

\[Q_{\text{had}}^2 > Q_{\text{min}}^2 \]

\[M_{\text{had}} > M_{\text{cut}} \]

\[Q_p^2 > Q_{\text{min}}^2 \]

\[M_p + M_{e^\pm} < M_{\text{had}} \]

\[Q_p^2 < Q_{\text{min}}^2 \]

\[M_{\text{had}} < M_{\text{cut}} \]

\[(1-3 \text{ GeV}^2) \]

\[(5 \text{ GeV}^2) \]

\[e^\pm p \rightarrow e^\pm X + Y \]

\[Q_{\text{had}}^2 \text{ or } Q_{\text{min}}^2 \]

\[Q_{\text{had}}^2 \text{ or } Q_{\text{min}}^2 \]

\[M_{\text{had}} \text{ or } M_{\text{cut}} \]
Elastic process

\((M_{\text{had}} = M_p) \)

- New particle 'proton' was added into GRACE as a fundamental particle.
- Definition of \(pp\gamma \) vertex

\[
\Gamma_{pp\gamma}^\mu = e_p \left(F_1(q^2) \gamma^\mu + \frac{\kappa}{2M_p} F_2(q^2) i\sigma^{\mu\nu} q_\nu \right)
\]

\(\kappa \): Anomalous magnetic moment of proton

\(F_1(q^2), F_2(q^2) \): Independent formfactors

\[
\begin{pmatrix}
G_E(q^2) \\
G_M(q^2)
\end{pmatrix} = \begin{pmatrix}
F_1(q^2) + \frac{\kappa q^2}{4M_p} F_2(q^2) \\
F_1(q^2) + \frac{\kappa}{\kappa} F_2(q^2)
\end{pmatrix}
\]

Dipole-Formfactor

\[
G_E(q^2) = \frac{1}{\left(1 - \frac{q^2}{0.71}\right)^2} = \frac{G_M(q^2)}{\mu_p}
\]
DIS process

\[Q_p^2 > Q_m^2 \]

AND

\[M_{\text{had}} > M_{\text{cut}} \]

- **eq scattering** (← GRACE amplitudes)
- **Parton density function** (→ Kinematics)
- **Interfaced to PYTHIA to get complete hadronic final states**

\[
\sigma_{ep \rightarrow eXl^-l^-(s)} = \sum_{\text{quarks}} \int dx f_i(x) \sigma_{eq(i) \rightarrow eq(i)l^-l^-}(\hat{s})
\]
Quasi-elastic process

\[(Q_p^2 < Q_{min}^2) \]
\[\text{OR} \]
\[(M_p + M_{\pi^0} < M_{\text{had}} < M_{\text{cut}}) \]

- General form of the proton current
- Structure functions from the experimental data

\[\sum_X W^{\mu\nu} = W_1 \left(-g^{\mu\nu} + \frac{q^\mu q^\nu}{q^2}\right) + W_2 \frac{1}{M_p^2} \left(p^\mu - \frac{p^\mu q^\nu}{q^2} q^\nu\right) \left(p^\nu - \frac{p^\nu q^\mu}{q^2} q^\mu\right) \]

\[d\sigma \sim L_{\mu\nu} W^{\mu\nu} \]
Two sets of the parameterization for W_1, W_2 are used in the cross-section calculation.

Brasse et al. ($M_{had} < 2\text{ GeV}$)

\[\sigma_{\gamma^* p}^{\text{tot}} \]

\[W (\text{GeV}) \]

\[\sigma \text{ (mb)} \]

ALLM97 ($M_{had} > 2\text{ GeV}$)

The exclusive hadronic final state is simulated by SOPHIA as a result of the real-photon and proton collision.
Cross Section Comparisons with LP AIR

Process: $ep \rightarrow eX\mu^+\mu^-$ (at HERA energy) with Bethe-Heitler only

Detector cuts

- **Cut(1)** — $15^\circ < \theta_\mu < 164^\circ$, $E_\mu > 2$ GeV (for both muons)
- **Cut(2)** — $15^\circ < \theta_\mu < 164^\circ$, $E_\mu > 2$ GeV (for both muons)
 & $15^\circ < \theta_e < 164^\circ$, $E_e > 4$ GeV (for scattered positron)

Stability of the GRACE calculation

Elastic

<table>
<thead>
<tr>
<th></th>
<th>GRAPE</th>
<th>LP AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cut</td>
<td>$9.742(\pm 0.003) \times 10^4$</td>
<td>$9.736(\pm 0.003) \times 10^4$</td>
</tr>
<tr>
<td>Cut(1)</td>
<td>$8.493(\pm 0.005) \times 10$</td>
<td>$8.496(\pm 0.008) \times 10$</td>
</tr>
<tr>
<td>Cut(2)</td>
<td>$6.094(\pm 0.008) \times 10^{-1}$</td>
<td>$6.091(\pm 0.005) \times 10^{-1}$</td>
</tr>
</tbody>
</table>

(in unit of pb)

DIS

<table>
<thead>
<tr>
<th></th>
<th>GRAPE</th>
<th>LP AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cut</td>
<td>$9.463(\pm 0.002) \times 10^2$</td>
<td>$9.464(\pm 0.002) \times 10^2$</td>
</tr>
<tr>
<td>Cut(1)</td>
<td>$3.651(\pm 0.005) \times 10$</td>
<td>$3.649(\pm 0.004) \times 10$</td>
</tr>
<tr>
<td>Cut(2)</td>
<td>$4.311(\pm 0.005) \times 10^{-1}$</td>
<td>$4.313(\pm 0.004) \times 10^{-1}$</td>
</tr>
</tbody>
</table>

(in unit of pb)

Quasi-elastic

<table>
<thead>
<tr>
<th></th>
<th>GRAPE</th>
<th>LP AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cut</td>
<td>$7.029(\pm 0.003) \times 10^3$</td>
<td>$7.025(\pm 0.002) \times 10^3$</td>
</tr>
<tr>
<td>Cut(1)</td>
<td>$4.855(\pm 0.005) \times 10$</td>
<td>$4.846(\pm 0.004) \times 10$</td>
</tr>
<tr>
<td>Cut(2)</td>
<td>$4.254(\pm 0.004) \times 10^{-1}$</td>
<td>$4.255(\pm 0.004) \times 10^{-1}$</td>
</tr>
</tbody>
</table>

(in unit of pb)

Good Agreement in all cases within statistical error of $\sim 0.1\%$
[4] Program Structure

- Executable file
- Input/Output file
- Ntuple file
- ASCII file

```
program grape
    integer :: i
    real :: x, y
    real, parameter :: pi = 4.0 * atan(1.0)
    real, dimension(:,:), allocatable :: data
    allocate(data(10, 20))
    data = sqrt(2.0) * sin(pi)
    do i = 1, 10
        x = data(i, 1)
        y = data(i, 2)
        print *, x, y
    end do
    deallocate(data)
end program grape
```

Mar 26 2000 16:32:48 grape.cards Page 1
T. Abe (Univ. of Tokyo)
Workshop on ep Interactions with High E_t
Mar. 28 2000
Examples of Calculations

Z⁰ Effect

\[e^+ p \rightarrow e^+ p \mu^+ \mu^- \] (at HERA energy)

Detector cuts (2µ visible)

\[15^\circ < \theta_\mu < 164^\circ, \quad P_t > 5 \text{ GeV/c} \]

(for both muons)

\[\begin{align*}
& \text{BH(\gamma\gamma)} \\
& \text{BH(\gammaZ)} \\
& \text{CO(\gamma)} \\
& \text{CO(Z)}
\end{align*} \]

Numerical Results

\[Z^0 \text{ effect } \sim 0.002 \text{ pb} \]

\[\frac{\text{BH(\gamma\gamma)}+\text{CO(\gamma)}}{\text{BH(\gamma\gamma)}+\text{CO(\gamma)}} \]

Graphs

- **Graph 1**: Ratio of cross sections.
 - BH(\gamma\gamma) + CO(\gamma)
 - BH(\gamma\gamma) + CO(\gamma) + BH(\gammaZ) + CO(Z)

- **Graph 2**: Distribution of \(M_{\mu\mu} \) in GeV.

T. Abe (Univ. of Tokyo) Workshop on ep Interactions with High \(E_t \) Mar. 28 2000
CO Effect

\[e^+ q \rightarrow e^+ q \mu^+ \mu^- \] (at HERA energy)

Detector cuts

18° < \(\theta_{\mu} \) < 160° & \(P_t > 5 \text{ GeV/c} \)
(for at least one muon) &
\(P_{tq} > 15 \text{ GeV} \) & \(\theta_q > 10^\circ \)

\[\begin{array}{c}
\text{\(B H \)} \\
\text{\(E W \)}
\end{array} \]

\[\text{pb / GeV} \]

\[\text{pb / deg} \]

\[\text{Opening angle of } \mu^+ \mu^- \text{ [deg]} \]

\[\text{M}_{\mu^+ \mu^-} \text{ [GeV]} \]
[6] Summary and Prospects

- The methods and the interface for the general proton vertex have been established.
 - Dilepton production (GRAPE-Dilepton generator)
 - QED Compton
 - Sbottom-W production

- New processes can be (will be) easily included not only for \(ep \) but also for \(pp, p\bar{p} \) collisions.
 - Future works