IP Chamber for Belle SVD2

Tetsuo Abe

Tohoku University

— Outline —

- 1) SVD Upgrade
- 2) Beam-induced backgrounds
- 3) Stress analysis
- 4) Beam-pipe heating
- 5) Cooling system for the Be pipe
- 6) Schedule

KEKB Review Meeting

Feb. 11, 2003

Silicon Vertex Detector (SVD) Upgrade

 \ll In current use \gg

- Radiation hardness (VA1): $\sim 1\,{\rm MRad}$
- Pin-hole problem

⇒ etc.

= R(layer1) = 3.0 cm= 3 layers

- \ll Installed in the summer of 2003 \gg
- \Rightarrow Radiation hardness (VA1): > 20 MRad
- Improvemtns on the electronics
- Inprovemtns on the DAQ

⇒ etc.

Higher tracking efficiency

IP Chamber for SVD1 ($r\sim 2.0\,{\rm cm}$)

Beam-induced Backgrounds

We have studied:

[1] Particle background on HER and LER

- Beam-gas scatterings in the entire ring (Bremsstrahlung + Coulomb)
- Beam-chamber interactions around IP (up to QC2's)
- Touschek effect

[2] Background from the Synchrotron Radiation (SR) of HER

(1) Soft SR radiated from the HER beam in the straight section

 $-E_{crit}$ \lesssim a few keV

- (2) Hard SR (\leftarrow backscattering \leftarrow QCSR)
 - $-E_{crit}\sim$ 20 keV

[1] Particle-background simulation

(done by Karim Trabelsi)

- KEKB lattice model & Materials around IP
 - $\longrightarrow \mathsf{GEANT} + \mathsf{TURTLE}$ simulation

 \Rightarrow Data/MC comparison on the SVD1-layer1 dose

	Simul	Measurement		
	Brems+Coul	Touschek	[kRad/yr]	
HER	40.5		40.5	24
LER	35.2(23.3)	56.5(6.5)	91.7(29.8)	82

(The numbers in () with no contribution from scatterings on materials outside the vacuum chamber.)

The simulation can reproduce the measurement within a factor of a few.

Dose calculation for SVD2 (*r*=1.5 cm**)**

	Dose [kRad/yr]				
	Layer1 Layler2 Layler3				
HER Brems	12.5	3.0	1.9		
HER Coul	13.4	3.9	3.5		
LER Brems	13.1(9.0)	3.4(2.0)	1.6(0.6)		
LER Coul	14.0	1.4	1.0		
Touschek	28.8(9.0)	6.7(1.3)	9.7(0.9)		
Sum	<mark>82</mark> (58)	18(12)	18(8)		

The expected dose is much less than the radiation hardness of SVD2 (>20 MRad).

[2]-(1) Dose Estimation for the Soft SR

- Improved on low-energy photons (L-edge X-rays) at KEK
- Photons traced down to 1 keV
- Electrons traced down to 20 keV
- Exact geometry of the beam-pipe from the drawing

SVD2 SR Dose

for the Physics-run Orbit on 2001.11.07

(BP-geometry cut is applied.)

	Watt ($E_{\gamma} > 10{ m keV}$)	E_{crit} [keV]	$ heta_{kick}$ [mrad]	Dose [kRad/yr]
BC1LE	1.1E-03	1.5	-0.47	< 0.24
ZHQC2	$8.0 \text{E}{-04}$	1.3	+0.38	< 0.26
QC2LE	$7.0 \text{E}{-}05$	1.1		< 0.08
•••	$< 1.0 \mathrm{E}{-08}$			

SVD2 SR Dose

for the Physics-run Orbit on 2002.05.15

(BP-geometry cut is applied.)

	Watt ($E_{\gamma} > 10{ m keV}$)	E_{crit} [keV]	$ heta_{kick}$ [mrad]	Dose [kRad/yr]
QC4LE	8.9E-04	1.0		$2.1{\pm}0.3$ (bottom)
BC1LE	$3.1 \text{E}{-}05$	1.3	-0.40	< 0.02
ZHQC2	7.9E-06	1.0	+0.30	< 0.005
QC2LE	4.7E-06	1.1	_	< 0.008
QC1LE	1.9E-06	3.7		< 0.001
•••	$< 1.4 \text{E}{-08}$			

SVD2 SR Dose for the Injection

based on the Orbit on 2001.11.07

(BP-geometry cut is applied.)

	Watt ($E_{\gamma} > 10{ m keV}$)	E_{crit} [keV]	$ heta_{kick}$ [mrad]	Dose [kRad/yr]
QC1LE	17.1	5.6		$0.86{\pm}0.07$ (top)
				$1.46{\pm}0.10$ (bottom)
QC2LE	1.8	2.4	_	$0.022{\pm}0.002$ (top)
				$0.023{\pm}0.002$ (bottom)
QA2LE	$5.0 \text{E}{-02}$	_	_	_
QA3LE	$4.0 \text{E}{-02}$	—	_	_
QA7LE	1.7E-02			—
QA4LE	1.6 E - 02			_
QA6LE	1.4 E-02			_
BC1LE	1.1E-02	1.5		
•••	$< 6.0 \mathrm{E}{-03}$			

Tetsuo Abe (Tohoku University)

SVD2 SR Dose for the Injection

based on the Orbit on 2002.05.15

(BP-geometry cut is applied.)

	Watt ($E_\gamma > 10{ m keV}$)	E_{crit} [keV]	$ heta_{kick}$ [mrad]	Dose [kRad/yr]
QC1LE	17.3	5.7		$0.84{\pm}0.07$ (top)
				$1.56{\pm}0.10$ (bottom)
QC2LE	1.8	2.4	—	$0.016{\pm}0.003$ (top)
				$0.027{\pm}0.004$ (bottom)
QA2LE	5.2 E - 02	_		
QA3LE	$4.8 \text{E}{-02}$	—	—	_
QA7LE	2.2 E - 02	_	_	
QA4LE	1.9E-02			—
QA6LE	1.7E-02			
•••	$< 7.0 \mathrm{E}{-03}$			

Dose from the soft SR in the SVD2 layer1 is expected to be

- ≤ 1 kRad/yr in physics runs
 ∼ 1 kRad/yr in injections

which are much less than the SVD2 radiation hardness:

- > 10 MRad on the silicon sensors (DSSD)
- > 20 MRad on the readout chips (VA1)

[2]-(2) Dose Estimation for the Hard SR

(QCSR \rightarrow backscattering \rightarrow IP chamber)

(done by H. Yamamoto)

➡ No SR mask in FWD (R-side)

to avoid possible resonant-HOM heatings

- Simulation can predict dangerous modes.
- However, the required fabrication accuracy is close to the limit.
- We chose to remove the SR mask.

 \implies Heavy metals (Ta, W) in the taper section

(much less than the radiation hardness of SVD2)

Stress Analysis

- The heavy-metal shield leads to a large amount of stress in the joint section.
- The final design has been checked by IHI using FEA.

Finite-Element Analysis (FEA)

- ➡ Based on the 3-dimensional SOLID model with an approximation:
 - Cylindrically symmetric around the beam axis
- Single support at the flange
- \implies Inside: vacuum, the cooling gap: 2 kgf/cm², outside: 1 atm
- \implies (calculated stress) \times 1.15 for earthquakes
- Static analysis
- Definition of the permissible amount of stress:

 $\min\left(\frac{1}{4} \times \mathbf{UTS}, \frac{2}{3} \times \mathbf{YS}\right)$

UTS: Ultimate Tensile Stress YS: Yield Stress

[1] Displacement (max.)

- $\implies 0.628 \, \mathrm{mm}$ with the single support at the flange
- " ${} \sim 0.1\,{\rm mm}$ with the fixed support on the flange
 - \longrightarrow Acceptable for the SVD2 mechanical structure

[2] Proper frequency

- $\implies 29.8\,\mathrm{Hz}$ with the single support at the flange
- $\twoheadrightarrow \sim 70\,{\rm Hz}$ with the fixed support on the flange
 - \longrightarrow Rigid structure (> 20 Hz)
 - \longrightarrow No dynamic analysis needed for earthquakes

[3] Stress

Section	Stress (max) [kgf/mm ²]	× 1.15	Permissible limit [kgf/mm ²]	Judgment
Inner Be (FWD)	7.69	8.84	12.4	OK
(BWD)	7.39	8.50	12.4	OK
AI (FWD)	2.12	2.44	<mark>2.5</mark>	OK
(BWD)	1.88	2.16	2.5	OK
Ta (FWD)	2.01	2.31	10.5	OK
(BWD)	3.36	3.86	10.5	OK
Ta welding (FWD)	2.01	<mark>2.31</mark>	2.58	OK
(BWD)	2.36	2.71	3.87	OK
Ta-SUS brazing (FWD)	0.70	0.81	_	(OK)*
(BWD)	0.74	0.85		(OK)*
SUS-Be brazing (FWD)	0.88	1.01	_	(OK)*
(BWD)	0.74	0.85		(OK)*
Al-Be(out) welding (FWD)	1.12	1.29	1.88	OK
(BWD)	1.05	1.21	1.88	OK
Al-Be(in) welding (FWD)	1.42	1.63	1.88	OK
(BWD)	0.83	0.95	1.88	OK

* Estimated using the data of the tensile tests

The final design has stress under the limit all over the chamber.

Beam-pipe Heating

caused by

(1) Synchrotron Radiation

In some cases,

- $ightarrow \sim$ 3.5 W on the SR mask (ightarrow 6 K rise at the tip)
- $ightarrow \sim$ 10 W on the Ta pipe

(2) Image current

Heat:
$$U(W) \propto n_b Q_b^2 \sqrt{rac{\mu}{\sigma_z^3 \sigma}} \cdot rac{L}{r}$$
 (μ : permeability, σ : conductivity)

In case of SVD2,

■ 25 W in the Be section

- → 47 W on the Ta pipe
- SUS piece is hidden.

(3) HOM (dominant)

(\rightarrow next page)

HOM Heating (incoherent)

simulated with

- MAFIA

- Non-cylindrical geometries
- More CPU time

⇒ ABCI

- Cylindrical geometries only
- \blacksquare Used in the estimation of the trapped modes (\rightarrow heating)

	······································					
	current	n_b	P_{meas}	P_{heat}		
BEAST	e^+ 300 mA	648	7 W	8 W		
BEAST	e^- 350 mA	921	10 W	8 W		
SVD1.2 e^+ 450 mA 1146 10.5 W 11 W						
$(P_{heat}: estimated with ABCI)$						

 \ll Heat generated in the Be section \gg

\rightarrow ABCI simulation works well.

\ll HOM loss and heating in the entire IP chamber \gg

	$P_{HOM}(W)$	$P_{heat}(W)$
SVD1.2	6800	300
SVD2 (fixed angle)	6250	770
SVD2 (varying angle)	2560	68

Heat(SVD2)/Heat(SVD1) \sim 1/5

due to the smoother inner surface of the SVD2 IP chamber

The SVD2 cooling system was designed for

- 100 W in the Be section
- 100 W in the FWD Ta cone
- 100 W in the BWD Ta cone

Cooling System for the Be pipe

Liquid coolant: normal paraffin

(He cooling close to the allowed stress limit)

- \rightarrow Chemically equivalent to PF200 (C_nH_{2n+2}) which has been used by CLEO for 3 years
- \blacksquare Flows in the gap of the double-wall Be cylinder (0.5 mm)
- Corrosion test has been performed using a Be rod over 6 months.
- The enough cooling power has been confirmed using the simulation and the mockup.
- The enough **flow rate** has been confirmed using the **genuine** beam-pipe.
 - $ightarrow \sim 2\,l/{
 m min}$ (should be $> 1\,l/{
 m min}$)

Schedule

In 2003,

- (1) Feb.17 \sim 28: Installation of the IP chamber into SVD2
- (2) Mar. \sim Jun.: System test & alignment using cosmic ray
- (3) Jul.1 \sim Oct.: Summer shutdown

 \longrightarrow Installation of SVD2 into the Belle detector