Fine Grooving of

Conductor Surfaces of

RF Input Coupler

To Suppress Multipactoring

<u>T. Abe</u>, T. Kageyama, H. Sakai and Y. Takeuchi *High Energy Accelerator Research Organization (KEK), Japan*

Two of the 32 ARES cavities had *multipactoring* problems in the coaxial line.

Multipactoring Zone Map

for the ARES Input Coupler with a regular coaxial line

from the model in

T. Abe et al., Phys. Rev. ST Accel. Beams 9, 062002 (2006)

Good Reproduction Power for the Data

6

Fine Grooving of the Surface

The *Quasi*-TEM is simulated by **GdfidL**.

Electric Field (peak) at the Groove

The max. 0.565[MV/m] is lower than that on the inner conductor of the coaxial line with no groove (=0.717[MV/m]).

Suppression against Multipactoring

1st Prototype

10

Summary

- We have performed a multipactoring simulation study for a grooved coaxial line based on the method in *T. Abe et al., Phys. Rev. ST Accel. Beams 9, 062002 (2006)* →Very effective against multipactoring.
- We have constructed a first prototype of input coupler with a grooved coaxial line.

 \rightarrow High power test to be performed soon