Recent Results on Electroweak Penguins at Belle

— $b \to s \gamma$ and $b \to s \, l^+ l^- \, {\rm decays}$ —

Tetsuo Abe

Tohoku University

For the Belle collaboration

BEAUTY2002 Jun. 17, 2002

Introduction

Flavor-Changing Neutral Current (FCNC)

- Forbidden at tree level in the SM, but occurs via loop or box diagrams
- Sensitive to heavy particles in new physics models
- Presented are studies on

Analysis in General

Signal-yield extraction

- 1. Reconstruction of $(E_B,\,ec{p_B})\,$ in the CM frame
- 2. Two kinematic variables to identify ${\cal B}$ decays:

$$- M_{bc} \stackrel{\text{def}}{\equiv} \sqrt{E_{beam}^2 - \vec{p}_B^2} \quad \text{(beam-constrained mass)}$$
$$- \Delta E \stackrel{\text{def}}{\equiv} E_B - E_{beam} \quad \text{(energy difference)}$$

3. Fit of M_{bc}

- Continuum: $e^+e^- \rightarrow q\bar{q}$ suppression using
 - Event shape variables: (modified) Fox-Wolfram moments, etc.
 - $\implies B$ flight direction
 - $\implies \Delta E \, \operatorname{cut}$
 - etc.

$B \to K^*(892)\gamma$ Analysis

Reconstructed modes:

- \Rightarrow Dataset: 29.4 fb⁻¹
- $\implies B\bar{B}$ background

 \blacksquare A small contribution from $B \to K^* \pi \gamma$

$B \to K^*(892)\gamma$ Asymmetry

$$A_{CP} \stackrel{\text{def}}{\equiv} \frac{1}{1 - 2\omega} \frac{N(\bar{B}) - N(B)}{N(\bar{B}) + N(B)}$$

(ω : wrong tag fraction = 0.9 %)

- = $A_{CP} \sim 0.5 \,\%$ in the SM $\sim 20 \,\%$ in some new physics models
- From the self-tagged modes: $K^+\pi^-, K_S\pi^+, K^+\pi^0$

$B \rightarrow K \pi \gamma$ Analysis with $M_{K\pi} > M_{K^*(892)}$

- ⇒ Some resonant structure is expected: $K^*(1410), K_2^*(1430), K^*(1680),$ etc.
- \Rightarrow Dataset: 29.4 fb⁻¹
- \implies A clear excess around $M_{K\pi}=1.4\,{\rm GeV}$
- ⇒ Fitting M_{bc} in $1.25 < M_{K\pi} < 1.6 \text{ GeV}$, → Signal yield: $27 \stackrel{+8}{_{-7}} \stackrel{+1}{_{-3}}$ evts (5.0 σ signif.)

Assuming $K^*(1410)^0\gamma$ + $K_2^*(1430)^0\gamma$ + non-resonant $K^+\pi^-\gamma$ (N.R.)

 \rightarrow Extract the resonant components.

Multi-dimensional Unbinned Maximum Likelihood Fit

Tetsuo Abe (Tohoku University)

$B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ Analysis

- Photon-polarization measurement using $K_1(1400) \rightarrow K\pi\pi$
 - → could be a tool to search for new physics (M. Gronau *et al.*, PRL **88** (2002) 051802)
- \Rightarrow Dataset: 29.4 fb⁻¹
- = Fitting M_{bc} in $M_{K\pi\pi} < 2.4 \text{ GeV}$, \rightarrow Signal yield: $57^{+12}_{-11} {}^{+6}_{-2}$ evts (5.9 σ signif.)

Assuming $K^{*0}\pi^+\gamma$ + $K^+
ho^0\gamma$

- + non-resonant $K^+\pi^-\pi^+\gamma$ (N.R.)
 - ightarrow Extract these 3 components.

Multi-dimensional Unbinned Maximum Likelihood Fit

hep-ex/0205025; submitted to Phys. Rev. Lett.

Summary of $b \rightarrow s\gamma$ **Measurements**

$$\frac{\mathbf{Exclusive}(K^*\gamma, K_2^*\gamma, K\pi\pi\gamma)}{\mathbf{Inclusive}} = 35 \pm 8\%$$

Next step: >3-body kaonic system for a better understanding on $b\to s\gamma$ measurements

$b \rightarrow s \, l^+ l^-$ Measurements

Exclusive Analysis

- $\implies B \to K l^+ l^-, \ K^*(892) \ l^+ l^- \ (l^+ l^- = e^+ e^-, \ \mu^+ \mu^-)$
- Experimentally easy, but more theoretical uncertainty
- Inclusive Analysis
 - $\implies B \to X_s \ l^+ l^-$
 - Experimentally difficult, but less theoretical uncertainty

Reconstructed modes:

$$\implies B^0 \rightarrow K_S \, l^+ l^-, \ B^+ \rightarrow K^+ \, l^+ l^-$$

- \Rightarrow Dataset: 29.1fb⁻¹
- $ightarrow Bar{B}$ backgrounds
 - $\implies J\!/\!\psi(\psi') X_s$ eliminated by $J\!/\!\psi(\psi')$ veto
 - $\rightarrow l^+ \nu X$, $l^- \nu Y$ suppressed using $E_{\rm miss}$
 - $\implies K^{(*)} h^+ h^-$ estimated with
 - the reconstructed $K^{(*)} h^+ h^-$ data
 - the measured momentum-dependent fake

rate

$B \rightarrow K^{(*)}l^+l^-$ **Results**

Mode	Signal yield	$\mathcal{B}(imes 10^{-6})$	Significance
$K e^+ e^-$	$4.1^{+2.7}_{-2.1}{}^{+0.6}_{-0.8}$	< 1.3	2.5
$K^* e^+ e^-$	$6.3^{+3.7+1.0}_{-3.0-1.1}$	< 5.6	2.5
$K \mu^+ \mu^-$	$9.5^{+3.8}_{-3.1}{}^{+0.8}_{-1.0}$	$0.99 {}^{+0.40 +0.13}_{-0.32 -0.14}$	4.7
$K^* \mu^+ \mu^-$	$2.1 {}^{+2.9}_{-2.1} {}^{+0.9}_{-1.0}$	< 3.1	—

First Observation

$$\mathcal{B}(B \to K \, l^+ l^-) = (0.75 \,{}^{+0.25}_{-0.21} \pm 0.09) \times 10^{-6}$$

(significance: 5.3 σ)

Phys. Rev. Lett. 88 (2002) 021801

ightarrow Consistent with the SM prediction.

$B \rightarrow X_s \, l^+ l^-$ Analysis

Pseudo-reconstruction

- $\implies X_s = (K^+ \text{ or } K_S) + (0 \sim 4)\pi$ (up to one π^0)
- \Rightarrow Dataset: 43 fb⁻¹
- $ightarrow Bar{B}$ backgrounds
 - $\implies J/\psi(\psi') X_s$ eliminated by $J/\psi(\psi')$ veto
 - $\rightarrow l^+ \nu X$, $l^- \nu Y$ suppressed using $E_{\rm miss}$
 - → $X_s h^+ h^-$ (misidentified as $X_s \mu^+ \mu^-$) estimated with
 - the reconstructed $X_s h^+ h^-$ data
 - the measured momentum-dependent fake rate

$B \to X_s l^+ l^-$ **Results**

PRELIMINARY

Mode	Signal yield	$\mathcal{B}\left(\times 10^{-6}\right)$	Significance
$X_s e^+ e^-$	$16.6 {}^{+8.0}_{-7.3} {}^{+3.9}_{-3.8}$	$5.1^{+2.6}_{-2.4}{}^{+1.3}_{-1.2}$	2.1
$X_s \mu^+ \mu^-$	$30.7^{+7.9+5.4}_{-7.4-3.8}$	$8.9^{+2.3+1.6}_{-2.1-1.7}$	4.4

First Evidence

$$\mathcal{B}(B \to X_s \, l^+ l^-) = (7.1 \, \pm 1.6 \, {}^{+1.4}_{-1.2}) \times 10^{-6}$$

(significance: **4.8** σ)

Consistent with the SM prediction: $(3.5 \sim 7.9) \times 10^{-6}$ (Ali *et al.*, hep-ph/0112300)

Consistency with the Exclusive Analysis

Tetsuo Abe (Tohoku University) $B \to X_s l^+ l^-$ **Results**

 \rightarrow Consistent with the SM prediction.

 $B \to X_s l^+ l^-$ **Results**

ightarrow Consistent with the SM prediction.

Systematic Uncertainties

for $\mathcal{B}(B \to X_s l^+ l^-)$

	$B \to X_s e^+ e^-$	$B \to X_s \mu^+\mu^-$
Tracking	8.1 %	8.0%
Kaon ID	1.9%	2.0%
Pion ID	0.8%	0.8%
Lepton ID	3.6 %	4.4%
K_S detection	2.1 %	1.5 %
π^0 detection	2.0%	1.6%
MC statistics	3.9%	4.1 %
Decay modeling	$^{+14}_{-9}$ %	$^{+16}_{-12}$ %
Total	$^{+18}_{-14}$ %	$^{+19}_{-16}$ %

Summary of $b \rightarrow s l^+ l^-$ **Measurements**

- The experimental results are consistent with the SM predictions.
- ⇒ Just started testing the SM in $b \rightarrow s l^+ l^-$.

SM predictions from
 Ali *et al.*, hep-ph/0112300;
 Greub *et al.*, Phys. Lett. B **346** (1995) 149;
 Melikhov *et al.*, Phys. Lett. B **410** (1997) 290

Conclusions

We have studied FCNC in $b \to s\gamma$ and $b \to s l^+ l^-$.

 $\Rightarrow b \rightarrow s\gamma$

- \blacksquare Measurements of the $K\pi\gamma, K\pi\pi\gamma$ final states
- \blacksquare Exclusive($K^*\gamma, K_2^*\gamma, K\pi\pi\gamma$) / Inclusive = $35 \pm 8\%$
- \blacksquare Extensive studies of exclusive $B \to K_X \gamma$

 $\implies b \rightarrow s \, l^+ l^-$

- → First observation: $\mathcal{B}(B \to K l^+ l^-) = (0.75 \, {}^{+0.25}_{-0.21} \pm 0.09) \times 10^{-6}$ (5.3 σ signif.)
- → First evidence: $\mathcal{B}(B \to X_s \, l^+ l^-) = (7.1 \pm 1.6 \, {}^{+1.4}_{-1.2}) \times 10^{-6}$ (4.8 σ signif.)
- Both consistent with the SM predictions

- More data is coming: \sim 90 fb⁻¹ by this summer.
- KEKB is getting close to its design luminosity.
- SuperKEKB is being proposed.

$$b \to s \gamma$$
 and $b \to s \, l^+ l^-$

Promising probe for

BEYOND SM PHYSICS

in next several years