Belle 実験に於ける放射光バックグラウンド に対するアラーム・システムの開発

阿部 哲郎

東北大学ニュートリノ科学研究センター

— 概要 —

- 1) 研究の背景・動機
- 2) 実軌道と放射光の計算法
- 3) ベンチマーク・テスト
- 4) まとめ

研究の背景

初代シリコン・バーテックス検出器(SVD1.0) のゲイン降下事件(1999年夏) 第1層日の

- ➡ いきなり 10 日間程でゲインが無く なってしまった
- ➡ 原因は High Energy Ring (HER) からのシンクロトロン放射光

2003年1月30日

研究の動機

- SVD1.0 のゲイン降下事件
 - → HER からの放射光が原因
- → より細い衝突点ビームパイプ (←検出器をなるべく衝突点近くに置きたい)
 - \implies $r = 2.0 \,\mathrm{cm} \rightarrow 1.5 \,\mathrm{cm} \rightarrow 1.0 \,\mathrm{cm}$ (?)
- → より大きなビーム電流
 - → より多くの放射光

新しいアイデアに基づくアラーム・システム

実軌道の計算

- HER 直線部の全磁石を対象 (see ↓)
- 線形近似 → transfer matrices
- 専用のプログラムを開発

SADシステムによる行列要素との比較

例、 QC3LE

In[61] := TransferMatrix["QC3LE","LX086E.1"]
Out[61] :=

{1.0415110062367,1.094542869142296,0,4.440892098501E-16}

 $\{.077425177671287, 1.0415110062367, 3.469446951954E-18, 0\}$

{3.382710778155E-17,-3.53883589099E-16,.959055549847622,1.065412001995326}
{-2.60208521397E-18,2.775557561563E-17,-.075287731090181,.959055549847622}

$$\frac{R_{ij}^{(T.Abe)} - R_{ij}^{(SAD)}}{|R_{ij}^{(SAD)}|} = \begin{pmatrix} 0 & +4 \times 10^{-15} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2 \times 10^{-15} & -3 \times 10^{-14} \\ 0 & 0 & 0 & -2 \times 10^{-15} \end{pmatrix}$$

BPM 測定値のフィット

• インプット:
$$\begin{cases} (1) 12 個の BPM の測定値 \\ (2) 磁石の磁場の強さ $(k_0, k_1) \end{cases}$$$

• フローティング・パラメータ:
$$\begin{pmatrix} x_{\text{ini}} \\ y_{\text{ini}} \end{pmatrix}$$
, $\begin{pmatrix} x_{\text{IP}} \\ y_{\text{IP}} \end{pmatrix}$

•
$$\chi^2 \stackrel{\text{def}}{\equiv} \sum_{j:\text{BPM}} \left\{ \left(X_j^{(\text{BPM})} - X_j^{(orbit)} \right)^2 + \left(Y_j^{(\text{BPM})} - Y_j^{(orbit)} \right)^2 \right\} / \sigma^2$$

● 最小化 by MINUIT

•
$$\frac{\chi^2}{ndf} = \frac{\chi^2_X + \chi^2_Y}{ndf(X) + ndf(Y)} = \frac{\frac{\chi^2_X}{ndf(X)} \frac{1}{ndf(Y)} + \frac{\chi^2_Y}{ndf(Y)} \frac{1}{ndf(X)}}{\frac{1}{ndf(X)} + \frac{1}{ndf(Y)}}$$
 (ndf:自由度)

7/25

オフセットの定義

オフセットの決定

→ 6本の異なる軌道が得られる

≪ フローティング・パラメータ ≫

- | 偏向磁石のリスケール | < 20%
- $|X_{IP}| < 1 \,\mathrm{mm} \,\& \,|Y_{IP}| < 1 \,\mathrm{mm}$

放射光の計算

以下の解析式を使用 (J. S. Schwinger, Phys. Rev. 75, 1912 (1949))

$$\Delta W = \frac{3\alpha}{4\pi^2} \frac{I}{e} \gamma^2 \times \Delta \omega \Delta \phi \Delta \psi \frac{1}{\omega} \left(\frac{\omega}{\omega_c}\right)^2 \left(1 + X^2\right)^2 \left\{K_{\frac{2}{3}}^2(\eta) + \frac{X^2}{1 + X^2} K_{\frac{1}{3}}^2(\eta)\right\} \hbar \omega$$

SAD による厳密計算

- 分布の絶対値と形の一致 ⇒→ 放射光に関する計算のチェック
- 分布の位置の一致 ⇒ 座標変換に関する計算のチェック

ベンチマーク・テスト

SVD1.0 ゲイン降下事件を再現できるか?

≪ 測定器シミュレーション ≫

- KEK-improved EGS4 を使用(1keV までシミュレーション)
- SVD1.0 geometry in EGS4: 図面通り厳密に記述
 (↑幾何学計算のモジュール化:平面、円筒、円錐)

外

[1] ゲイン降下の開始前

地

Ladder#	1	2	3	4	5	6	7	0		
線量 [Rad/min/A]	2.1 ± 0.9	1.2 ± 0.7	23±3	41±4	33 ± 4	33 ± 4	25 ± 3	3.5 ± 1		
時間	4641分 (3.2日)									
平均ビーム電流	4.6 mA									
線量 [kRad]	0.06	0.04	0.53	0.93	0.75	0.74	0.57	0.10		
ゲイン降下 (計算)[%]	0.02	0.01	0.17	0.30	0.24	0.23	0.18	0.03		
ゲイン降下(測定)[%]	≤ 1									

[2] ゲイン降下の開始後

地

Ladder#	1	2	3	4	5	6	7	0	
線量 [hRad/min/A]	1.5 ± 0.4	$1.7{\pm}0.5$	10 ± 1	17 ± 1	24 ± 2	19 ± 1	19 ± 1	7.2 ± 0.9	
時間	8071分 (5.6日)								
平均ビーム電流	6.7 mA								
線量 [kRad]	8.0	9.2	55	92	131	102	102	39	

外

まとめ

放射光バックグラウンドに対するアラーム・システム

- → 実軌道の計算
 - III BPM 測定値をフィット
 - ➡ オフセット補正法
- 放射光の計算
 - ➡ 解析的式をモンテカルロ積分
- → SAD による計算と比較
 - ⇒ 計算システムのチェック
- SVD1.0 ゲイン降下の定量的再現
 - → このシステムの正当性を実験的に確認