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Last 2 years at the LHC

Searches for

3SM physi

CS have been

extensive and effective

Searches are less model dependent

Still waiting for discovery
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The Classic Signature
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Shooting Fish in a Barrel!

Not completely trivial

High Multiplicity
No NLO

Backgrounds

Tree-level Is state of the art
Data Driven Extrapolation: /N — N + 1

Heterogenous final states (+ b-tagging)
AW : (84,00) — (03, 44)

Jets can be Merged Together

A variety of final state jet multiplicities

Isolated Jet

D1 1S

Reduced

Easily fall beneath 50 GeV



Lots of similar examples in Susy

2 Step Cascade Decay
g— W —H— B

M 127 Jets
A L Combine with heavy flavor
9 201 Jets!
800 GeV P
qq >
X
400 GeV \ij 3
X +  ~0

200 GeV — W‘) X
100 GeV




Inclusive Approach
to gaining sensitivity to high multiplicity final states

First Realization:

Requiring N jets requires O(N) cuts

Jets may have small pr (accidentally forward)

Jets merge together
Get Lost

The more cuts, the less inclusive
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Typical Susy Searches use
anti-kt R = 0.4 to 0.6

Lots of room for isolated jets
Can find up to 60

Good at separating high multiplicity
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lake a great leap backwards
anti-kt R = 1.2

No room for isolated jets
Only 4 to © jets possible



Seem to

the single

13 Jet Event

eat
these events specia

nave |ost
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Typical QCD Background




Now need to distinguish

Signal Background




The difference between the Is clear

Large Jet Mass Small Jet Mass
:r;:mjrvl a::mjrvozS%R
pT pT

—ach jet mass is approximately independent for QC




f 15t jet has a large mass,
will the 2" jet have a large mass more often?

Consider my/pr of 2 leading jets

hix1,x2)

h(il?l,ﬂj‘g)fh(ﬂ?l,a?g)dfbldﬂ?g
H —
($1,ZE’2) fh(il?l,a?g)dﬂi‘l fh(il?l,ilig)da?g,

QCD: 2 < AlejQ < 3.9

0.6

Z°%+nj with Pythia 6.4
~5% correlations
Slightly positive correlation

X1



Contrast to top events

T T T g Small Mass
0.5 : |
: ] 1.2
0.4
| 1.0
03] i
Io.g
0.2} i
N 0.6
) 0.1 0.2 0.3 04 0.5 0.6
30% Correlations Negative correlation arge Mass

If one iIs massive,
the second is less likely to be massive



Mean Jet Mass [GeV]

Fat Jet Masses at ATLAS
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INntroduce 1 New Variable

Sum of Jet Masses

Ny
MJ — E mjn
n=1

QCD jets have most of their mass generated
by the parton shower

Top events have their mass capped near 400 GeV
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My as a replacement for Hr
Ny
Hr =) Erj,
n—=1

Hr =) (07, +m3)? mj = Kpr it

xS0 S (wR) 2+ 1) = gy VI

— kR
Signal Background
<m§fb> X p%,iRQ <m§z> X Cvsp’_QT,iR21

Signal typically has higher M, for fixed Hr
Never does worse



Treating Top as a Signal

=Real signal even steeper
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Two Benchmark Models

4 Top 2 Step
M M
A N A N
g g
800 GeV = 600 GeV
~/0‘ qq
tt X
350 GeV
X:\ W:F
~ ()
100 GeV 100 GeV




Missing Energy Distribution

107,
: Top
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o(fb)/50 GeV

After cut of £ > 150 GeV
S/B <1
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o(fb)/25 GeV
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Gain at high M,
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Final Search

Search N, R Leptons N, FEr Hr My,
GeV]| [GeV] [GeV]
ATLAS 6-87 04 0 0" 35+Hr 0 0
Hr+SSDL-top| 37 1.2 SSDL 17 0 300 0
Hr-top 47 1.2 0t 1T 250 800 ()
Hr-cascade 4™ 1.2 0" 0" 150 1000 0
M search 47 1.2 07 0" 150 ® 450

Maximally Inclusive
No b-tags, no lepton vetos, low ME




o X Br (fb)

4 Top Limits

Multi-top
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o X Br (ifb)

2 Step Limits

2-step cascade
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Jet Grooming

Not used In this study

May not be necessary

Designed to iImprove searches for hadronic resonances

Want to be maximally inclusive

Large mass jets may arise fromnr
accidental grouping of final state partons

Large jet masses not close to resonance masses



Jet Grooming

May hurt search

Can’t use grooming techniques where
number of subjets are specified in advance

Filtering typically fixes Nsupjet

Pruning, Trimming do not

Set Jet Grooming aside



Non-MET Searches

Not all theories have large MET

Two Benchmark Models

Saryonic
M

g

500 GeV

449

q

PV

Stealth Susy
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230 Ge\/ ...... S
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Stea\th Susy MET
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o(fb)/50 GeV

M vs Hrt
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Outlook

High Multiplicity Signals are Challenging

M, can be a powerful new tool

L ots of Techni-Processes

pp — p — mm — (tt)(tt)
pp — w — wrmw — (1t)(t¢)(it)

At High Luminosity, Track Mass may be useful
Could even potentially use as a trigger



