Jet Masses and Searches for New Physics

Jay Wacker SLAC

POwLHC Feb. 17, 2012

> arXiv:1202.0558 w/ E. Izaguire A. Hook M. Lisanti

Outline

High Multiplicity with MET Examples

Light Flavored Example Heavy Flavored Example

Jet Mass Searches

Discussion High Multiplicity without MET

Last 2 years at the LHC

Searches for BSM physics have been extensive and effective

Searches are less model dependent

Still waiting for discovery

Naturalness is now being challenged

Reach for gluinos now approaching 1 TeV

Naturalness is now being challenged

Reach for gluinos now approaching 1 TeV

But there are caveats:

Problems seen for

Compressed Spectra No limits for $m_{x^0} > 200$ GeV

High Multiplicity Final States

Long Cascades have reduced limits 4 tops worse than 4 bottoms

Are we doing well-enough?

Naturalness is now being challenged

Reach for gluinos now approaching 1 TeV

But there are caveats:

Problems seen for

Compressed Spectra No limits for $m_{x^0} > 200$ GeV

High Multiplicity Final States

Long Cascades have reduced limits 4 tops worse than 4 bottoms

Are we doing well-enough?

The Classic Signature

The Classic Signature

Shooting Fish in a Barrel!

Should Be Like Shooting Fish in a Barrel!

Not completely trivial

Shooting Fish in a Barrel! Not completely trivial High Multiplicity Backgrounds No NLO Tree-level is state of the art Data Driven Extrapolation: $N \rightarrow N + 1$ Shooting Fish in a Barrel! Not completely trivial High Multiplicity Backgrounds No NLO Tree-level is state of the art Data Driven Extrapolation: $N \rightarrow N + 1$

Heterogenous final states (+ b-tagging) $4W: (8j, 0\ell) \rightarrow (0j, 4\ell)$ Shooting Fish in a Barrel! Not completely trivial High Multiplicity Backgrounds No NLO Tree-level is state of the art Data Driven Extrapolation: $N \rightarrow N + 1$

Heterogenous final states (+ b-tagging) $4W: (8j, 0\ell) \rightarrow (0j, 4\ell)$

> Jets can be Merged Together A variety of final state jet multiplicities

Shooting Fish in a Barrel! Not completely trivial High Multiplicity Backgrounds No NLO Tree-level is state of the art Data Driven Extrapolation: $N \rightarrow N + 1$

Heterogenous final states (+ b-tagging) $4W: (8j, 0\ell) \rightarrow (0j, 4\ell)$

> Jets can be Merged Together A variety of final state jet multiplicities

Isolated Jet P_T is Reduced Easily fall beneath 50 GeV

Lots of similar examples in Susy 2 Step Cascade Decay $\tilde{g} \rightarrow \tilde{W} \rightarrow \tilde{H} \rightarrow \tilde{B}$

Inclusive Approach to gaining sensitivity to high multiplicity final states

First Realization:

Requiring N jets requires O(N) cuts

Jets may have small p_T (accidentally forward)

Jets merge together

Get Lost

The more cuts, the less inclusive

Typical Susy Searches use anti- $k_T R = 0.4$ to 0.6

Lots of room for isolated jets Can find up to 60

Good at separating high multiplicity from low multiplicity

Typical Susy Searches use anti- $k_T R = 0.4$ to 0.6

Lots of room for isolated jets Can find up to 60

Good at separating high multiplicity from low multiplicity

Take a great leap backwards anti- $k_T R = 1.2$

> No room for isolated jets Only 4 to 6 jets possible

Seem to have lost the single feature that made these events special 3 Jet Event 13 Jet Event

Typical QCD Background

13 Jet

3 Jet

Now need to distinguish

Signal

Background

The difference between the is clear

Each jet mass is approximately independent for QCD

If 1st jet has a large mass,
will the 2nd jet have a large mass more often?
Consider m_j/p_T of 2 leading jets
$$h(x_1, x_2)$$

 $H(x_1, x_2) = \frac{h(x_1, x_2) \int h(x_1, x_2) dx_1 dx_2}{\int h(x_1, x_2) dx_1 \int h(x_1, x_2) dx_2}$,

Contrast to top events

30% Correlations Negative correlation

If one is massive, the second is *less* likely to be massive Large Mass

Fat Jet Masses at ATLAS

Introduce 1 New Variable

Sum of Jet Masses

QCD jets have most of their mass generated by the parton shower

Top events have their mass capped near 400 GeV

M_J as a replacement for H_T

$$H_T = \sum_{n=1}^{N_J} E_{T j_n}$$

$$H_T = \sum_{i=1}^{n_J} (p_{T,i}^2 + m_{j_i}^2)^{\frac{1}{2}} \qquad m_j = \kappa p_T R$$
$$\propto \sum_{i=1}^{n_J} \sqrt{\langle m_{j_i}^2 \rangle ((\kappa R)^{-2} + 1)} \simeq M_J \frac{\sqrt{1 + (\kappa R)^2}}{\kappa R}$$

M_J as a replacement for H_T

$$H_T = \sum_{n=1}^{N_J} E_{T\,j_n}$$

$$H_T = \sum_{i=1}^{n_J} (p_{T,i}^2 + m_{j_i}^2)^{\frac{1}{2}} \qquad m_j = \kappa p_T R$$
$$\propto \sum_{i=1}^{n_J} \sqrt{\langle m_{j_i}^2 \rangle ((\kappa R)^{-2} + 1)} \simeq M_J \frac{\sqrt{1 + (\kappa R)^2}}{\kappa R}$$

SignalBackground $\langle m_{j_i}^2 \rangle \propto p_{T,i}^2 R^2$ $\langle m_{j_i}^2 \rangle \propto \alpha_s p_{T,i}^2 R^2$

Signal typically has higher M_J for fixed H_T Never does worse

Two Benchmark Models

Missing Energy Distribution

Gain at high MJ

Search	N_j	R	Leptons	N_b		H_T	M_J
					[GeV]	[GeV]	[GeV]
ATLAS	$6-8^+$	0.4	0	0^+	$3.5 \sqrt{H_T}$	Ø	Ø
$H_T + \text{SSDL-top}$	3^{+}	1.2	SSDL	1^{+}	Ø	300	Ø
H_T -top	4^+	1.2	0^+	1^{+}	250	800	Ø
H_T -cascade	4^+	1.2	0^+	0^+	150	1000	Ø
M_J search	4^{+}	1.2	0^+	0^+	150	Ø	450

Maximally Inclusive No b-tags, no lepton vetos, low MET

4 Top Limits

2 Step Limits

1000

Jet Grooming

Not used in this study

May not be necessary

Designed to improve searches for hadronic resonances

Want to be maximally inclusive

Large mass jets may arise from *accidental* grouping of final state partons

Large jet masses not close to resonance masses

Jet Grooming May hurt search

Can't use grooming techniques where number of subjets are specified in advance

Filtering typically fixes n_{subjet}

Pruning, Trimming do not

Set Jet Grooming aside

Non-MET Searches

Not all theories have large MET

Two Benchmark Models

Reach for Stealth ~ 700 GeV Reach for RPV ~ 400 GeV

Can do better by looking for resonant structures

Outlook

High Multiplicity Signals are Challenging

 M_J can be a powerful new tool

Lots of Techni-Processes $pp \rightarrow \rho \rightarrow \pi\pi \rightarrow (t\bar{t})(t\bar{t})$ $pp \rightarrow \omega \rightarrow \pi\pi\pi \rightarrow (t\bar{t})(t\bar{t})(t\bar{t})$

At High Luminosity, Track Mass may be useful Could even potentially use as a trigger