Multi-tau-lepton signatures at the LHC in the two Higgs doublet model

PRESENTATION

Koji TSUMURA (NTU → Nagoya U.) POwLHC @ KEK 16-18/2/2012

Outline: -Two-Higgs-doublet model -Leptophilic Higgs boson

S. Kanemura, K. Tsumura and H. Yokoya, arXiv:1111.6089

M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Phys. Rev. D80 015017 (2009)

Two-Higgs-doublet model (2HDM)

Models for tiny neutrino masses

Zee model (radiative seesaw)

$$\mathcal{L} = +\overline{L}Y_{\ell 1}\ell_R \frac{H_1}{H_1} + \overline{L}Y_{\ell 2}\ell_R \frac{H_2}{H_2} + \text{H.c.}$$

Gauged Type-III seesaw

$$\mathcal{L} = +\overline{Q}Y_u u_R \widetilde{H}_q + \overline{Q}Y_d d_R H_q + \overline{L}Y_\ell \ell_R H_\ell + \text{H.c.}$$

2HDM often appears in new physics BSM

2HDM in SUSY

SUSY requires 2HDM:

- **D** Holomorohy of superpotential
- Mass generation for up- and down-type quarks
- Anomaly cancellation
- **D** Gauge coupling unification

$$\mathcal{L} = +\overline{Q}Y_u u_R \frac{H_u}{H_u} + \overline{Q}Y_d d_R \frac{H_d}{H_d} + \overline{L}Y_\ell \ell_R \frac{H_d}{H_d} + \text{H.c.}$$

2HDM often appears in new physics BSM 2HDM is a low energy effective theory

Classify 2HDMs by Yukawa

□ General 2HDM (Type-III) $\mathcal{L} = \overline{L} \left(Y_{\ell 1} \Phi_1 + Y_{\ell 2} \Phi_2 \right) \ell_R + \text{H.c.}$

Yukawa int. is not simultaneously diagonalized with mass matrix.

→ Generate tree level FCNC (Flavor changing neutral current).

Adding extra Z2 sym. to avoid FCNC

$$\begin{array}{ccc} \Phi_1 \to +\Phi_1, & L \to +L \\ \Phi_2 \to -\Phi_2, & \ell_R \to -\ell_R \end{array} \\ \mathcal{L} = \overline{L} \left(\checkmark +Y_{\ell 2} \Phi_2 \right) \ell_R + \text{H.c.} \end{array}$$

4 types of Yukawa int.

Type-X || +

Type-Y

Type-II: 2HDM structure in SUSY

$$\mathcal{L} = +\overline{Q}Y_u u_R \frac{H_u}{H_u} + \overline{Q}Y_d d_R \frac{H_d}{H_d} + \overline{L}Y_\ell \ell_R \frac{H_d}{H_d} + \text{H.c.}$$

+

+

+

POwLHC

4 types of Yukawa int.

4 independent combinations of Z2 charges Φ_1 Φ_2 d_R ℓ_R Q, L u_R Type-I ++Type-II +╋ Type-X +++Type-Y

Type-X: gauged type-III seesaw

$$\mathcal{L} = +\overline{Q}Y_u u_R \widetilde{H}_q + \overline{Q}Y_d d_R H_q + \overline{L}Y_\ell \ell_R H_\ell + \text{H.c.}$$

Higgs bosons distinguish quarks and leptons!!

Extra Higgs can be leptophilic (tan β >3)

2HDM (Notation)

 $\Box \text{ Softly Z2 broken 2HDM potential } \Phi_i = \begin{pmatrix} \omega_i^+ \\ \frac{1}{\sqrt{2}}(v_i + h_i + i z_i) \end{pmatrix}$ $V_{2\text{HDM}} = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 - \left(m_3^2 \Phi_1^{\dagger} \Phi_2 + \text{H.c.} \right) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \text{H.c.} \right]$

<u>5 physical Higgs bosons</u> (assume CP inv.) m_{3}^{2}, λ_{5} real

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \mathcal{R}(\alpha) \begin{pmatrix} H \\ h \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \mathcal{R}(\beta) \begin{pmatrix} z \\ A \end{pmatrix}, \begin{pmatrix} \omega_1^+ \\ \omega_2^+ \end{pmatrix} = \mathcal{R}(\beta) \begin{pmatrix} \omega^+ \\ H^+ \end{pmatrix}, \mathcal{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Higgs boson masses in SM-like limit

$$m_h^2 \sim 2\lambda v^2$$
, $m_{H,A,H^{\pm}}^2 \sim M^2 + \frac{\lambda v^2}{2}$ where $M^2 \equiv m_3^2/(\sin\beta\cos\beta)$

"h" behaves as the SM Higgs boson

 $W^+_{\mu}W^+_{\nu}h: ig_W M_W \sin(\beta-\alpha)g_{\mu\nu}$

□ "H, A, H+" behave as **SCalar** boson

$$V^+_{\mu}W^-_{\nu}H : ig_W M_W \cos(\beta - \alpha)g_{\mu\nu}$$

Type-X Yukawa interaction

□ Yukawa int. of extra scalars (H,A,H⁺) in the SM-like limit is corrected by a factor of $tan\beta = < \Phi_2 > / < \Phi_1 >$

$$\xi^{u}$$
 ξ^{d} ξ^{ℓ} Type-I $1/\tan\beta$ $-1/\tan\beta$ $-1/\tan\beta$ Type-II $1/\tan\beta$ $\tan\beta$ $\tan\beta$ Type-X $1/\tan\beta$ $-1/\tan\beta$ $\tan\beta$ Type-Y $1/\tan\beta$ $\tan\beta$ $-1/\tan\beta$

Type-X: Leptoplilic in $tan\beta>3$

Aoki, Kanemura, Tsumura, Yagyu, PRD80, 015017 (2009)

Higgs decays in 2HDMs

Why do we focus on Leptophilic Higgs boson?

Leptophilic Higgs

Problems in Lepton sector?

Tiny neutirno mass

3-loop neutrino mass, light H+, by Aoki et al. PRL102:051805,2009

Problems in Lepton sector?

Leptonic cosmic ray @ PAMELA, FERMI

Higgs as a messenger of DM by Goh et al. JHEP 0905:097,2009

 $\mathsf{DM}\;\mathsf{DM}\;\not\rightarrow\Phi'\;\Phi'\;\not\rightarrow\tau\tau\tau\tau$

Experimental constraints

- Direct search results
- Tau leptonic decays

Direct search limit

Small Yukawa coupling with quarks in Type-X.

For large $tan\beta$

Are there any purely leptonic constraint?

τ leptonic decay

milder bounds for Type-II and -X

mH+ ~ 100GeV is allowed for Type-X

Koji Tsumura (ntu)

Leptophilic Higgs boson @ LHC

Leptophilic-2HDM @ LHC

DY production with leptonic decay modes

Multi-tau signature

4τ: more than 99% 2μ2τ: σ(4τ) x 1/300 x 2!

Cross sections are O(10)fb

Framework of Event analysis

Signal/BG(VV, ttbar, DY) are generated by PYTHIA and MG5 50fb for mH=130GeV & mA=170GeV/107pb, 492pb, 30nb

 \Box jets (anti-kT alg. with R<0.4)

□τj = taujet: |η|<2.5, pT>10GeV

<u>Identification</u>; 1 or 3 charged hadrons (1- & 3-prong)

*R*tracks

narrow cone R<0.15 (95% of ET)

leptonic $\tau \rightarrow \mu \nu \nu$: 17.36% $\tau \rightarrow h^- \nu$: 11.61% $\tau \to e\nu\nu$: 17.85% $\tau \to h^- h^0 \nu$: 25.1%

1-prong $\tau \to h^{-}(>2h^{0})\nu$: 10.85%

3-prong $\tau \rightarrow h^- h^+ h^- (> 0h^0)\nu$: 14.56%

Koji Tsumura (ntu)

4 tau lepton signature

• H/A decay into tau-lepton pair by more than 99%.

• more tau-jets, the larger branching ratios

=

e

μ

 $4\tau_h$ channel : T_h T_h T_h (an example)

 $(0.65)^4 \sim 18\%$: large number of events is expected

perform selection cuts to enhance signal/background ratio

High multiplicity of tau jet reduces BG.

$4\tau_h$ channel : T_h T_h T_h (an example)

 $(0.65)^4 \sim 18\%$: large number of events is expected

• perform selection cuts to enhance signal/background ratio

$4\tau_h$ event analysis	HA	$\phi^0 H^\pm$	VV	$t\bar{t}$	V+jets	s/b	$S \ (100 \ {\rm fb}^{-1})$
Pre-selection	324.	52.8	147.	797.	5105.	0.1	4.7
$p_T^{\tau_h} > 40 \text{ GeV}$	67.2	4.9	2.0	14.7	21.7	1.9	9.4
$\not\!$	48.6	4.4	1.1	7.6	10.4	2.8	9.3
$H_T^{\rm jet} < 50 { m ~GeV}$	34.2	3.4	0.5	0.8	8.2	3.9	8.7
$H_T^{\rm lep} > 350~{\rm GeV}$	27.6	2.7	0.4	0.5	3.1	7.5	9.3

• Large significance with large s/b ratio for L = 100 [fb⁻¹]. (we only used one channel !!)

Almost BG free, excess can be found.

 $4\tau_h$ channel : T_h T_h T_h (an example)

Lepton channels	$4\tau_h$ s/b	(S)	$(3\tau_h 1\mu s/b)$	(S)	$3\tau_h 1e$ s/b	(S)	$2\tau_h 1\mu t$ s/b	(S)	$2\tau_h 2e$ s/b	(S)
Pre-selection	377./6050.	(4.8)	302./4208.	(4.6)	278./3883.	(4.4)	166./917.	(5.3)	74.4/13202.	(0.6)
$p_T^{\tau_h} > 40 \text{ GeV}$	72.1/38.5	(9.5)	87.2/70.2	(8.9)	80.2/72.2	(8.2)	71.7/67.5	(7.6)	32.4/479.	(1.5)
$\not\!$	53.0/19.0	(9.3)	69.3/54.6	(8.0)	63.4/53.8	(7.5)	58.0/58.6	(6.7)	26.3/38.6	(3.8)
$H_T^{\rm jet} < 50 { m ~GeV}$	37.6/9.6	(8.7)	49.0/17.4	(8.9)	44.9/23.0	(7.6)	41.7/13.7	(8.5)	18.7/16.0	(4.0)
$H_T^{ m lep} > 350~{ m GeV}$	30.3/4.0	(9.3)	34.5/8.4	(8.4)	31.4/10.9	(7.2)	24.2/3.8	(8.0)	10.7/8.2	(3.2)
$(m_Z)_{ee} \pm 10 \text{ GeV}$	-	(-)	-	(-)	-	(-)	-	(-)	9.3/2.5	(4.2)

						~		
Lepton channels	$1\tau_h 1\mu$	2e	$1\tau_h 3$	e	1µ3	e	4e	Ì
1	s/b	(S)	s/b	(S)	s/b	(S)	s/b	(S)
Pre-selection	29.2/132.	(2.5)	8.7/120.	(0.8)	1.7/7.6	(0.6)	0.4/268.	(0.0)
$p_T^{\tau_h} > 40 \text{ GeV}$	19.3/38.6	(2.9)	5.6/34.2	(0.9)	-	(-)	-	(-)
$\not\!\!\!E_T > 30~{\rm GeV}$	15.5/22.1	(3.0)	4.6/19.2	(1.0)	1.2/3.4	(0.6)	0.3/2.6	(0.2)
$(m_Z)_{ee} \pm 10 \text{ GeV}$	13.6/2.4	(5.8)	4.0/6.5	(1.4)	1.1/1.2	(0.9)	0.2/0.7	(0.2)

Koji Tsumura (ntu)

 $4\tau_h$ channel : τ_h τ_h τ_h τ_h (an example)

Comments:

- Due to the many sources of missing momenta, mass reconstruction is difficult.
- □ Higgs boson masses may be obtained by finding endpoints of $M_{\tau_h \tau_h}$ distributions.

Pairing of tau-jets from the four can be chosen for the pair which has max. transverse momentum of tau-jet-pair, or which has smallest distance.

POwLHC

2 mu - 2 tau signature

Small branching ratio, but clean signatures

of dimuon with sharp resonance peak.

Koji Tsumura (ntu)

 $2\mu 2\tau_h$ channel : (an example) T_h T_h μ

Koji Tsumura (ntu)

Summary

Leptophilic 2HDM is interesting.

- **Light scalar bosons** are allowed by experimental data.
- □ Scalar bosons mainly decay into <u>tau</u> (mu).

Multi tau events can be clean signatures @ LHC

D Excess of 4 tau signature can be easily found.

 $4\tau_{h} \text{ channel}: \mathbf{T}_{h} \mathbf{T}_{h}$

Allowed Higgs mass region

Official CERN Statement

The main conclusion is that the Standard Model Higgs boson, if it exist, is most likely to have a mass constrained to the range 116-130 GeV by the ATLAS experiment, and 115-127 GeV by CMS. Tantalising hints have been seen by both experiments in this mass region, but these are not yet strong enough to claim a discovery.

EW precision data

EW precision data

4 types of Yukawa int.

4 independent combinations of Z2 charges

	Φ_1	Φ_2	u_{B}	d_{R}	ℓ_{B}	Q,L
Type-I	+	_	_	_	_	+
Type-II	+	-	-	+	+	+
Type-X	+	-	-	-	+	+
Type-Y	+	-	-	+	-	+

Type-I: SM-like Higgs and an extra scalar

Fermion masses are generated only from $\Phi 2$

(may relate for Ma model,...< Φ 1>=0)

4 types of Yukawa int.

4 independent combinations of Z2 charges

	Φ_1	Φ_2	u_R	d_R	ℓ_R	Q, L
Type-I	+	-	-	-	_	+
Type-II	+	_	-	+	+	+
Type-X	+	-	-	-	+	+
Type-Y	+	-	-	+	-	+

□ Type-Y: I have no idea related for NP.

(actually stringently constrained by experimental data)

Type-III (general): Zee model

 $\mathcal{L} = +\overline{L}Y_{\ell 1}\ell_R \frac{H_1}{H_1} + \overline{L}Y_{\ell 2}\ell_R \frac{H_2}{H_2} + \text{H.c.}$

$B\to\tau\,\nu$

• Only W boson contributes $\mathbf{B} \rightarrow \tau \, \mathbf{v}$ in the SM

$$B_{u}^{-} \left\{ \begin{array}{c} b \\ \bar{u} \end{array} \right\} \underbrace{W^{-}}_{V_{\tau}} \left(\Gamma^{\text{SM}} = \frac{G_{F}^{2} |V_{ub}|^{2} F_{B}^{2} m_{B} m_{\tau}^{2}}{8\pi (1 - m_{B}^{2}/m_{W}^{2})^{2}} \left(1 - \frac{m_{\tau}^{2}}{m_{W}^{2}} \right)^{2} \right)$$

$$\overline{\nu_{\tau}} \left(\overline{\nu_{\tau}} \right) \underbrace{W^{-}}_{V_{\tau}} \left(\overline{\nu_{\tau}} \right) \underbrace{W^{-}}_{V_{\tau}} \left(\overline{\nu_{\tau}} \right) \underbrace{W^{-}}_{V_{\tau}} \left(1 - \frac{m_{\tau}^{2}}{m_{W}^{2}} \right)^{2} \right) \underbrace{W^{-}}_{V_{\tau}} \left(\overline{\nu_{\tau}} \right) \underbrace{W^{-}}_{W_{\tau}} \left(\overline{\nu_{\tau}} \right) \underbrace{W^{-}}_$$

In 2HDMs, H+ contrib. can be important!

$rac{\mathcal{B}^{2\mathrm{HDM}}}{\mathcal{B}^{\mathrm{SM}}}$	$\approx 1 -$	$-\frac{m_B^2}{m_{H^\pm}^2}\xi$	$\left \xi_d\xi_\ell\right ^2$
	ξ^u	ξ^d	ξ ^ℓ
Type-I	$1/\tan\beta$	$-1/\tan\beta$	$-1/\taneta$
Type-II	$1/\taneta$	aneta	aneta
Type-X	$1/\taneta$	$-1/\taneta$	aneta
Type-Y	$1/\taneta$	aneta	$-1/\taneta$

$B \to \tau \: \nu \: \text{in 2HDMs}$

D Experimental limit:

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = (1.4 \pm 0.4) \times 10^{-4}$$

Large deviations from the SM can be constrained. In particular, Type-II 2HDM with large tanß.

■ In 2HDMs, H+ contrib. can be important!

$B \to \tau \: \nu \: \text{in 2HDMs}$

$$\left(rac{\mathcal{B}^{2\mathrm{HDM}}}{\mathcal{B}^{\mathrm{SM}}} pprox \left|1 - rac{m_B^2}{m_{H^{\pm}}^2} \mathrm{tan}^2 \,eta
ight|^2
ight)$$

well known stringent constraint on SUSY charged Higgs

Type-I
$$\frac{\mathcal{B}^{2\text{HDM}}}{\mathcal{B}^{\text{SM}}} \approx \left|1 - \frac{m_B^2}{m_{H^{\pm}}^2} \frac{-1}{\tan^2 \beta}\right|^2$$

This constraint is only applicable for 2HDM-II

One-loop: $b \rightarrow s \gamma$

\mathbf{D} \mathbf{b} \rightarrow **s** γ is one of important observable.

Although 1-loop, but enhanced by mt In addition to C7W (SM W boson loop) $ar{u},ar{d}$

Type-II, Y
$$C_7^{H^{\pm}} = 2\sqrt{2} \left\{ (\frac{1}{\tan\beta})^2 F(\frac{m_t^2}{m_{H^{\pm}}^2}) + (\frac{1}{\tan\beta}) \tan\beta G(\frac{m_t^2}{m_{H^{\pm}}^2}) \right\}$$

almost $tan\beta$ independent contrib.

Type-I, X
$$C_7^{H^{\pm}} = 2\sqrt{2} \left\{ (\frac{1}{\tan\beta})^2 F(\frac{m_t^2}{m_{H^{\pm}}^2}) + (\frac{1}{\tan\beta})(\frac{1}{\tan\beta})G(\frac{m_t^2}{m_{H^{\pm}}^2}) \right\}$$

	ξ^u	ξ^d	ξ^ℓ
Type-I	1/ aneta	$-1/\taneta$	$-1/\tan\beta$
Гуре-II	1/ aneta	aneta	aneta
Гуре-Х 🛛	1/ aneta	$-1/\taneta$	aneta
Гуре-Y	1/ aneta	aneta	-1/ aneta

One-loop: $b \rightarrow s \gamma$

This constraint is applicable for 2HDM-II & -Y Type-I, X $C_7^{H^{\pm}} = 2\sqrt{2} \left\{ \left(\frac{1}{\tan\beta}\right)^2 F\left(\frac{m_t^2}{m_{H^{\pm}}^2}\right) + \left(\frac{1}{\tan\beta}\right) \left(\frac{1}{\tan\beta}\right) G\left(\frac{m_t^2}{m_{H^{\pm}}^2}\right) \right\}$ $2\mu 2\tau_h$ channel : μ μ τ_h τ_h (an example)

$6 \times (0.65)^2 \cdot (0.175)^2 \sim 7.8\%$ from $\tau \tau \tau \tau$ $0.7\% \times (0.65)^2 \sim 0.3\%$ from $\mu \mu \tau \tau \rightarrow \text{dimuon peaks}$

perform selection cuts to enhance signal/background ratio

before cuts s/b < 10^{-2} , but ~ 3 after cuts

43

POwLHC

Koji Tsumura (ntu)

Event by event determination of HA pair

$\Box \tau - \tau$ inv. Mass can be reconstructed !!

D Collinear approx.

$$\left[\vec{p}_{
u} \simeq c \, \vec{p}_{ au_j}
ight]$$

v from energetic τ decay is along with charged track (τ j)

 $\rightarrow \tau$ mom. can be determined from taujet and missing pT

$$\left(\vec{p_T}^{\text{miss}} \simeq c_1 \, \vec{p_T}_{\tau_j 1} + c_2 \, \vec{p_T}_{\tau_j 2}\right)$$

2 unknown (c1 & c2) are calculated by solving simultaneous 2 eqs.

$$M_{\tau\tau} = \sqrt{(p_{\tau 1} + p_{\tau 2})^2} \simeq M_{\tau_j \tau_j} / \sqrt{z_1 z_2}$$

$$ec{p}_{ au_j}\simeq z\,ec{p}_{ au}=rac{1}{1+c}\,ec{p}_{ au}$$

 $2\mu 2\tau_h$ channel : μ μ τ_h τ_h (an example)

Taujet inv. Mass and Tau inv. Mass Number of Events / bin Events 1.4 0.3 Number of 0.5 ···V+jets V+jets 0.8 0.15 0.6 0.1 0.4 0.05 0.2 $M_{ au_h au_h}$ 200 150 $M_{\tau\tau}$ \Box Sharp peaks (H,A \rightarrow TT) around M=130GeV,170GeV $M_{\tau\tau} = \sqrt{(p_{\tau 1} + p_{\tau 2})^2} \simeq M_{\tau_j \tau_j} / \sqrt{z_1 z_2}$

POwLHC

Koji Tsumura (ntu)

Several channels can be combined

												* .
Lepton channels	$2\mu 2\tau_h$ s/b	(S)	$2\mu 1 au_h$ s/b	(S)	$3\mu 1\tau$ s/b	h (S)	$4\mu s/b$	(S)	$3\mu 1$ s/b	e(S)	$2\mu 2 a$ s/b	e (S)
Pre-selection	98.7/16507.	(0.8)	35.7/154.	(2.8)	14.3/162.	(1.1)	0.9/401.	(0.0)	2.6/8.9	(0.8)	3.3/647.	(0.1)
$p_T^{\tau_h} > 40 \text{ GeV}$	42.8/618.	(1.7)	23.6/46.2	(3.2)	9.4/46.8	(1.3)	-	(-)	-	(-)	-	(-)
$\not\!$	34.7/ 59.7	(4.5)	19.2/25.3	(3.3)	7.7/27.5	(1.4)	0.7/4.2	(0.3)	2.0/5.8	(0.8)	2.5/5.7	(1.0)
$H_T^{\rm jet} < 50 { m ~GeV}$	25.2/17.1	(5.1)	-	(-)	-	(-)	-	(-)	-	(-)	-	(-)
$H_T^{\text{lep}} > 250 \text{ GeV}$	22.7/13.3	(5.1)	15.7/18.4	(3.3)	6.5/20.2	(1.4)	0.6/2.1	(0.4)	1.5/2.8	(0.8)	1.7/3.0	(0.9)
$(m_Z)_{\mu\mu}\pm 10~{\rm GeV}$	19.8/6.4	(5.8)	13.7/2.3	(5.9)	5.4/5.1	(2.1)	0.5/0.5	(0.6)	1.3/0.6	(1.3)	1.3/0.3	(1.6)
O.S. muons	13.8/6.3	(4.4)	9.5/2.0	(4.6)	-	(-)	-	(-)	-	(-)	0.9/0.3	(1.3)
$0 \le z_{1,2} \le 1.1$	3.0/1.6	(1.9)	3.0/1.0	(2.3)	2.0/1.3	(1.5)	0.4/0.2	(0.7)	0.7/0.3	(1.0)	0.4/0.2	(0.8)
$(m_Z)_{\tau\tau}\pm 20~{\rm GeV}$	2.8/0.8	(2.3)	2.8/0.3	(3.0)	1.8/0.7	(1.7)	0.3/0.1	(0.8)	0.6/0.2	(1.0)	0.4/0.0	(-)

 $2\mu 2\tau_h$ channel : μ μ τ_h τ_h (an example)

