Unbiased Mass Measurements at Hadron Colliders

David Curtin

arXiv:1112.1095

POwLHC Workshop KEK, Japan

February 17, 2012

Motivation

Problem: Mass Measurement at the LHC

- Many BSM theories feature pair-produced invisible massive particles.
- Do not know longitudinal rest frame of collision.

Possible Solution: Kinematic Endpoints $(M_{jj}, M_T, \mathbf{M_{T2}}, ...)$

- Can construct variables from visible momenta whose distribution has endpoints.
- The position of these endpoints depends on the masses in the decay chain.

Motivation

Obstacles:

- Unlike bumps, the important information of an edge is contained in very few events.
- Edges are problematic features to detect & define, and not robust.

• Extremely prone to mismeasurement from artifacts/low statistics/cuts.

- The most powerful of these endpoint variables M_{T2} is also the most fragile.
 - Very shallow edges easily washed out.
 - High levels of irreducible combinatorics background!

These problems have been long neglected but are **prohibitive** to wide application of M_{T2} -based mass measurement.

We will develop **solutions** to all of these problems & demonstrate them by measuring **all the masses in a fully hadronic 2-step symmetric decay chain with maximal combinatorial ambiguity:**

We will also verify our techniques using a Blind Monte Carlo Study.

Edge-to-Bump Measurement Method

- 2 Measuring M_{T2} Endpoints
- Monte Carlo Studies
- Onclusion

Edge-to-Bump Measurement Method

Measuring Endpoints

Say you have a distribution (signal + BG) of some variable *M*:

- Global fit often not possible (background, cuts, ...)
- The standard approach to measuring the endpoint position is to fit a kink-like function to a certain sub-domain of the distribution.

Problems:

- Fitting assumes the endpoint is there. Need to be able to detect the feature in the first place!
- Human bias: where to fit?
- Systematic errors? (choice of fit function, choice of fit domain)
- Smearing. (Smeared fit functions do not fit stably.)

A New Approach

Solution: A Monte-Carlo-based edge measurement approach.

- Instead of fitting one very clever fit function once (or a few times), fit a simple fit function 1000's of times.
- Examine a distribution of fits rather than a single fit itself:
 - Each fit returns an edge position \rightarrow get a kink distribution.
 - Edge Detection: Real Edges/endpoints will show up as peaks in the kink distribution
 - Edge Measurement:
 - Position of peak gives edge position.
 - Quality of edge, smearing, systematics, background: all contribute to the width of the peak.
 - \rightarrow peak width gives good estimate of edge position uncertainty.
- Turns the ill-defined problem of edge detection & measurement into bump-hunting.

⇒ Edge-to-Bump Method

Edge-to-Bump Method

Step-by-Step:

1. Fit a simple kink function 1000's of times to random subdomains of data (without domain length or position bias).

2. Detect Peaks in Kink Distribution.

Scan over peak width w looking for 3σ excesses in central vs side bins

Edge-to-Bump Method

3. True peaks in the kink distribution show up for all $w > w_{min}$ ('growing cones') \rightarrow Edge Detection!

Turn these found peaks into edge measurements by taking the mean & standard deviation of the edge distribution around the peak:

Example

Remarks

- The absence of an edge is signaled by the absence of clear peaks in the kink-distribution. Works very reliably.
- Our implementation is proof of concept. One could imagine much more sophisticated ways of analyzing the distribution of fits.

 The method is completely general: to detect different kinds of features just use different fit functions.

• Mathematica implementation EdgeFinder publicly available: http://insti.physics.sunysb.edu/~curtin/edgefinder/

Measuring M_{T2} Endpoints

Some useful M_{T2} references:

- Barr, Lester, Stephens '03 [hep-ph/0304226] (old-skool *M*₇₂ review)
- Cho, Choi, Kim, Park '07 [0711.4526] (analytical expressions for M_{T2} event-by-event without ISR, M_{T2}-edges)
- Burns, Kong, Matchev, Park '08 [0810.5576] (definition of *M*_{T2}-subsystem variables, analytical expressions for endpoints & kinks w. & w.o. ISR)
- Konar, Kong, Matchev, Park '09 [0910.3679] (Definition of $M_{72\perp}$ to project out ISR-dependence)

Classical M_{T2} Variable

$$M_{T2}(\vec{p}_{t1}^{T}, \vec{p}_{t2}^{T}, \tilde{m}_{N}) = \min_{\vec{q}_{1}^{T} + \vec{q}_{2}^{T} = \vec{p}^{T}} \left\{ \max\left[m_{T}\left(\vec{p}_{t1}^{T}, \vec{q}_{t}^{T}, \tilde{m}_{N}\right), m_{T}\left(\vec{p}_{t1}^{T}, \vec{q}_{t}^{T}, \tilde{m}_{N}\right) \right] \right\}$$

- If p_{N1}^T, p_{N2}^T were known, this would give us a <u>lower bound</u> on m_X
- However, we only know <u>total</u> \vec{p}^{T} \Rightarrow <u>minimize</u> wrt all possible splittings, get 'worst' but not 'incorrect' lower bound on m_X .
- We don't even know the invisible mass m_N! Insert a testmass m̃_N.

For the correct testmass, $M_{T2}^{\text{max}} = m_X \Rightarrow \text{Effectively get } \mathbf{m}_{\mathbf{X}}(\mathbf{m}_{\mathbf{N}}).$

Multi-Step: M_{T2}-Subsystem Variables

Complete Mass Determination Possible for 2+ Step Decay Chain.

Measure 3 masses. Available variables: M_{bb} , M_{T2}^{221} , M_{T2}^{210} , M_{T2}^{220} If we're going to analyze multi-step decay chains we need to get a handle on combinatorics background.

Simplest thing you could do: drop largest few M_{T2} 's per event.

- For each event, the true M_{T2} is a lower bound for M_{T2}^{max} .
- If there are several M_{T2}-possibilities per event, the largest one(s) are more likely to be wrong.
- \rightarrow Discard Them!
 - Works surprisingly well, some of the time.

Combinatorics Background: KE Method

What else could we do?

Edge in M_{bb} -distribution (invariant mass of decay chain) is relatively easy to measure using Edge-to-Bump, combinatorics are benign.

Could we make use of this M_{bb}^{max} information?

Combinatorics Background: KE Method

Extremely simple & high-yield method for determining decay chain assignment.

Known M_{bb}^{max}

 \Rightarrow deduce correct decay chain assignment for 15 - 30% of events:

100% purity! (Before mismeasurement & detector effects)

CB Reduction Example

No one method works reliably all of the time. Sometimes they fail, sometimes they produce fake edges.

M_{T2} Combinatorics Problem

 M_{T2} is 'powerful but fragile', much more problematic than M_{ij} :

- There are more wrong-sign combinations.
- Edges are shallow → less well defined, more easily washed out (ISR, detector effects, background).
- The combinatorics background has nontrivial structure
 → Fake Edges!
- No one method of reducing combinatorics background works reliably all of the time.
- ⇒ Combinatorics Background doesn't just reduce quality of edge measurement, it can invalidate measurement completely. Have to reject fakes!

Golden Rule for M_{T2} Measurements

Always use more than one method to reduce combinatorics background.

Only accept endpoint measurement if they agree

For each M_{T2} variable we perform the following steps:

- **(**) Apply two CB reduction methods \rightarrow two M_{T2} distributions.
- **2** Apply Edge-to-Bump to each \rightarrow two kink distributions.
- Good quality edges in both distributions that agree?

YES: merge & accept measurement

(can increase error bars)

NO: discard variable.

(e.g. disagreeing edges, no edge in one distribution, \dots)

Full M_{T2} Measurement Example

With Full Combinatorics Background

Monte Carlo Studies

First Monte Carlo Study

Apply our methods to a **fully hadronic combinatorics-worst-case scenario** without other backgrounds.

Measure 3 masses. Available variables: M_{bb} , M_{T2}^{221} , M_{T2}^{210} , M_{T2}^{220}

(use both ISR-binned & \perp versions, for zero and large testmass).

• Choose a particular MSSM Benchmark Point w/o SUSY-BG.

<i>m</i> _{t1}	m _{t2}	s _t	m _{b1}	m _{b2}	s _b	m _ĝ	$m_{\tilde{\chi}^0_1}$]
371	800	-0.095	341	1000	-0.011	525	98	

(Already excluded by LHC, but that doesn't matter for us.)

21/25

- $\sigma_{\tilde{g}\tilde{g}} \approx 11.6 \text{ pb}$ @ $\sqrt{s} = 14 \text{ TeV}$. Use $\mathcal{L} = 100 \text{ fb}^{-1}$ (pessimistic).
- Simulate with MadGraph/MadEvent, Pythia, PDG.
- Require 4 *b*-tags & MET > 200 GeV \rightarrow 58k Signal Events, Eliminates SM BG.

Edge Measurements

Variable	Prediction	Measurement	Deviation/ σ	Quality
M _{bb}	382.3	391.8 ± 10.3	+0.93	—
$M_{T2\perp}^{221}(0)$	303.5	240 ± 140	-0.45	С
$M_{T2}^{221}(0)$		301 ± 47	-0.05	Α
$M_{T2\perp}^{221}(E_b)$	7153.4	7154 ± 42	+0.01	А
$M_{T2}^{221}(E_b)$		7171 ± 42	+0.42	Α
$M_{T2\perp}^{210}(0)$	320.9	$\textbf{283} \pm \textbf{44}$	-0.86	А
$M_{T2}^{210}(0)$		$\textbf{327.2} \pm \textbf{8.7}$	+0.72	Α
$M_{T2\perp}^{210}(E_b)$	7239.8	7141 ± 54	-1.84	А
$M_{T2}^{210}(E_b)$		7176 ± 37	-1.75	Α
$M_{T2\perp}^{220}(0)$	506.7	509 ± 211	+0.01	С
$M_{T2}^{220}(0)$		528 ± 56	+0.38	В
$M^{220}_{T2\perp}(E_b)$	7393.1	7484 ± 106	+0.86	В
$M_{T2}^{220}(E_b)$		7456 ± 70	+0.90	В
$M_{T2\perp all}^{210}(0)$	312.8	249 ± 52	-1.23	В
$M_{T2\perp all}^{210}(E_b)$	7158.2	$\textbf{7129} \pm \textbf{40}$	-0.73	Α

NO FALSE MEASUREMENTS!

Stony Brook University

Mass Measurements

Gluino and sbottom masses measured with \sim 10% precision!

Blind Study

• Want to verify our methods with a different spectrum:

$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$\sin \theta_{\tilde{t}}$	$m_{\tilde{b}_1}$	$m_{\tilde{b}_2}$	$\sin \theta_{\tilde{b}}$	m _ĝ	$m_{\tilde{\chi}_1^0}$
1016	1029	0.76	404	1012	1	703	84

- Somewhat more luminosity to get same number of events. Analysis otherwise identical to first study.
- Did not know the spectrum prior to completing analysis!
- Worked equally well:

Conclusion

Conclusion

We showed for the first time that M_{T2} can be used to determine all the masses in a fully hadronic 2-step symmetric decay chain with maximal combinatorial ambiguity.

- Edge-to-Bump Method: MC-based edge detection and measurement that addresses bias, systematic error, and yields sensible uncertainties.
 - \rightarrow Much room for improvement & further development.
- KE-method of deducing decay chain assignment: extremely simple & high-yield.
- Application to M_{T2}: Simultaneous use of 2+ methods of reducing combinatorics background allows for rejection of fake edges & artifacts.