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Motivation
Problem: Mass Measurement at the LHC

Many BSM theories feature pair-produced
invisible massive particles.
Do not know longitudinal rest frame of
collision.

Possible Solution: Kinematic Endpoints (Mjj , MT , MT2, . . . )

Can construct variables from visible
momenta whose distribution has
endpoints.
The position of these endpoints depends
on the masses in the decay chain.
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Motivation
Obstacles:

Unlike bumps, the important information of an edge is contained
in very few events.

Edges are problematic features to detect & define, and not
robust.

Extremely prone to mismeasurement from artifacts/low
statistics/cuts.

The most powerful of these endpoint variables – MT2 – is also
the most fragile.

- Very shallow edges – easily washed out.
- High levels of irreducible combinatorics background!
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Motivation

These problems have been long neglected but are prohibitive to
wide application of MT2-based mass measurement.

We will develop solutions to all of these problems & demonstrate
them by measuring all the masses in a fully hadronic 2-step
symmetric decay chain with maximal combinatorial ambiguity:

We will also verify our techniques using a Blind Monte Carlo Study.
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Edge-to-Bump
Measurement Method



Measuring Endpoints
Say you have a distribution (signal + BG) of some variable M:

Global fit often not possible
(background, cuts, . . . )
The standard approach to
measuring the endpoint position is
to fit a kink-like function to a certain
sub-domain of the distribution.

Problems:
Fitting assumes the endpoint is there. Need to be able to detect
the feature in the first place!

Human bias: where to fit?

Systematic errors? (choice of fit function, choice of fit domain)

Smearing. (Smeared fit functions do not fit stably.)
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A New Approach
Solution: A Monte-Carlo-based edge measurement approach.

Instead of fitting one very clever fit function once (or a few times),
fit a simple fit function 1000’s of times.

Examine a distribution of fits rather than a single fit itself:

- Each fit returns an edge position→ get a kink distribution.

- Edge Detection: Real Edges/endpoints will show up as peaks in
the kink distribution

- Edge Measurement:
- Position of peak gives edge position.
- Quality of edge, smearing, systematics, background: all contribute

to the width of the peak.
→ peak width gives good estimate of edge position uncertainty.

Turns the ill-defined problem of edge detection &
measurement into bump-hunting.

=⇒ Edge-to-Bump Method
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Edge-to-Bump Method
Step-by-Step:

1. Fit a simple kink function 1000’s of times to random subdomains
of data (without domain length or position bias).

−→ Obtain Kink
Distribution

2. Detect Peaks in Kink Distribution.

−→
Scan over peak width
w looking for 3σ ex-
cesses in central vs
side bins
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Edge-to-Bump Method

3. True peaks in the kink distribution show up for all w > wmin
(‘growing cones’)→ Edge Detection!

Turn these found peaks into edge measurements by taking the
mean & standard deviation of the edge distribution around the
peak:
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Example
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Edge Measurement:
391.9 ± 10.3 GeV
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Remarks
The absence of an edge is signaled by the absence of clear
peaks in the kink-distribution. Works very reliably.

Our implementation is proof of concept. One could imagine much
more sophisticated ways of analyzing the distribution of fits.
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8000 ® 3526 Kinks

Filter Parameters:
Lmin = 100 GeV
Nmin = 500 −→

The method is completely general: to detect different kinds of
features just use different fit functions.

Mathematica implementation EdgeFinder publicly available:
http://insti.physics.sunysb.edu/~curtin/edgefinder/
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Measuring MT2 Endpoints



Quick MT2 Review

Some useful MT2 references:

Barr, Lester, Stephens ’03 [hep-ph/0304226] (old-skool MT2 review)

Cho, Choi, Kim, Park ’07 [0711.4526] (analytical expressions for MT2

event-by-event without ISR, MT2-edges)

Burns, Kong, Matchev, Park ’08 [0810.5576] (definition of MT2-subsystem
variables, analytical expressions for endpoints & kinks w. & w.o. ISR)

Konar, Kong, Matchev, Park ’09 [0910.3679] (Definition of MT2⊥ to project out
ISR-dependence)
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Classical MT 2 Variable
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If pT
N1, pT

N2 were known, this
would give us a lower bound on mX

However, we only know total ~/p
T

⇒ minimize wrt all possible splittings,
get ‘worst’ but not ‘incorrect’ lower
bound on mX .
We don’t even know the invisible
mass mN ! Insert a testmass m̃N .

For the correct testmass, Mmax
T 2 = mX ⇒ Effectively get mX(mN).
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Multi-Step: MT 2-Subsystem Variables

Complete Mass Determination Possible for 2+ Step Decay Chain.

Measure 3 masses. Available variables:

Mbb,

M221
T 2 , M210

T 2 , M220
T2
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Combinatorics Background: DL Method

If we’re going to analyze multi-step decay chains we need to get a
handle on combinatorics background.

Simplest thing you could do: drop largest few MT2’s per event.

For each event, the true MT2 is a lower bound for Mmax
T 2 .

If there are several MT2-possibilities per event, the largest one(s)
are more likely to be wrong.

→ Discard Them!

Works surprisingly well, some of the time.
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Combinatorics Background: KE Method

What else could we do?

Edge in Mbb-distribution (invariant mass of decay chain) is relatively
easy to measure using Edge-to-Bump, combinatorics are benign.

−→
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Could we make use of this Mmax
bb information?
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Combinatorics Background: KE Method

Extremely simple & high-yield method for determining decay
chain assignment.

Known Mmax
bb

⇒ deduce correct decay chain assignment for 15− 30% of events:

100% purity! (Before mismeasurement & detector effects)
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CB Reduction Example
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No one method works reliably all of the time. Sometimes they
fail, sometimes they produce fake edges.
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MT2 Combinatorics Problem

MT 2 is ‘powerful but fragile’, much more problematic than Mjj :

There are more wrong-sign combinations.

Edges are shallow→ less well defined, more easily washed out
(ISR, detector effects, background).

The combinatorics background has nontrivial structure
→ Fake Edges!

No one method of reducing combinatorics background works
reliably all of the time.

=⇒ Combinatorics Background doesn’t just reduce quality of edge
measurement, it can invalidate measurement completely.
Have to reject fakes!
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Golden Rule for MT 2 Measurements

Always use more than one method to reduce
combinatorics background.

Only accept endpoint measurement if they agree

For each MT2 variable we perform the following steps:

1 Apply two CB reduction methods→ two MT2 distributions.

2 Apply Edge-to-Bump to each→ two kink distributions.
3 Good quality edges in both distributions that agree?

YES: merge & accept measurement
(can increase error bars)

NO: discard variable.
(e.g. disagreeing edges, no edge in one distribution, . . . )
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Full MT 2 Measurement Example
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Monte Carlo Studies



First Monte Carlo Study
Apply our methods to a fully hadronic combinatorics-worst-case
scenario without other backgrounds.

Measure 3 masses. Available variables:

Mbb,

M221
T2 , M210

T2 , M220
T2

(use both ISR-binned & ⊥ versions, for zero and large testmass).

Choose a particular MSSM Benchmark Point w/o SUSY-BG.

mt1 mt2 st mb1 mb2 sb mg̃ mχ̃0
1

371 800 -0.095 341 1000 -0.011 525 98

(Already excluded by
LHC, but that doesn’t
matter for us.)

σg̃g̃ ≈ 11.6 pb @
√

s = 14 TeV. Use L = 100 fb−1 (pessimistic).

Simulate with MadGraph/MadEvent, Pythia, PDG.

Require 4 b-tags & MET > 200 GeV→ 58k Signal Events, Eliminates SM BG.
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Edge Measurements
Variable Prediction Measurement Deviation/σ Quality
Mbb 382.3 391.8± 10.3 +0.93 —
M221

T2⊥(0) 303.5 240± 140 −0.45 C
M221

T2 (0) 301± 47 −0.05 A
M221

T2⊥(Eb) 7153.4 7154± 42 +0.01 A
M221

T2 (Eb) 7171± 42 +0.42 A
M210

T2⊥(0) 320.9 283± 44 −0.86 A
M210

T2 (0) 327.2± 8.7 +0.72 A
M210

T2⊥(Eb) 7239.8 7141± 54 −1.84 A
M210

T2 (Eb) 7176± 37 −1.75 A
M220

T2⊥(0) 506.7 509± 211 +0.01 C
M220

T2 (0) 528± 56 +0.38 B
M220

T2⊥(Eb) 7393.1 7484± 106 +0.86 B
M220

T2 (Eb) 7456± 70 +0.90 B
M210

T2⊥all(0) 312.8 249± 52 −1.23 B
M210

T2⊥all(Eb) 7158.2 7129± 40 −0.73 A

NO FALSE MEASUREMENTS!
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Mass Measurements
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χ̃0
1

= 210± 92 (98)

Gluino and sbottom masses measured with ∼ 10% precision!
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Blind Study
Want to verify our methods with a different spectrum:

mt̃1
mt̃2

sin θt̃ mb̃1
mb̃2

sin θb̃ mg̃ mχ̃0
1

1016 1029 0.76 404 1012 1 703 84

Somewhat more luminosity to get same number of events.
Analysis otherwise identical to first study.

Did not know the spectrum prior to completing analysis!

Worked equally well:
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= 449± 44 (403) mmeas
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= 155± 92 (84)
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Conclusion



Conclusion

We showed for the first time that MT 2 can be used to determine
all the masses in a fully hadronic 2-step symmetric decay chain
with maximal combinatorial ambiguity.

Edge-to-Bump Method: MC-based edge detection and
measurement that addresses bias, systematic error, and yields
sensible uncertainties.

→ Much room for improvement & further development.

KE-method of deducing decay chain assignment: extremely
simple & high-yield.

Application to MT2: Simultaneous use of 2+ methods of reducing
combinatorics background allows for rejection of fake edges &
artifacts.
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