Tutorials of Feynrules ~とりあえず使ってみよう~

遠藤 基(東大)

コライダースクール, 2015.12.9

Feynrules?

*Whizard interface: Christensen, Duhr, BF, Reuter, Speckner (EPJC '12)

^ Support for spin 3/2: Christensen, de Aquino, Deutschmann, Duhr, BF, Garcia-Cely, Mattelaer, Mawatari, Oexl, Takaesu (EPJC '13)

Beyond the Standard Model phenomenology with FEYNRULES

What's today?

- 1. モデルファイルを作る (詳細は午後に阿部君)
- 2. Mathematicaで処理する
- 3. 各ツール (MadGraph, micrOMEGAs, ...) にコピーする
- 4. 現象論をやる

ここでの目的はFRを使ってみること(習うより慣れろ) モデルファイルは既存の物を使う

Install Feynrules

- Googleで"feynrules"を検索
 [https://feynrules.irmp.ucl.ac.be/]
- Download FeynRules ***からダウンロード
- Mathematicaの\$Pathの通った場所に解凍
 e.g. Macの場合: ~/Library/Mathematica/Applications
- ついでにfeynrules-currentをfeynrulesに改名 (シンボリックリンクを作っても良い)

Sample models

欲しいモデル(に似たモデル)をデータベースから探す

- Model Databaseの下の"Go to model database"
- 今回はW' modelを使ってみる
 - "Simple extensions of the SM"—"W' Effective model"
- Model filesから<u>weff.fr</u>とWEff.nbをダウンロード

Mathematica

モデルファイルをMathematicaで処理する

- weff.frとWEff.nbを同じフォルダに置く
- WEff.nbの一行目の\$FeynRulesPathを設定
 → feynrules(-current) フォルダの場所を指定する
- 細かいことは置いておいて全部実行する
- WEff.nbと同じフォルダに以下が生成される
 - 1. WEff_FA: FeynArts model file
 - 2. WEff_UFO: MadGraph, Herwig++ model file
 - 3. WEff-CH: CalcHEP, micrOEMGAs model file

MadGraph [aMC@NLO]

scattering, decayなどのMonte Carlo simulator

https://launchpad.net/mg5amcnlo

- DownloadsからMG5_aMC_v***.tar.gzを手に入れる
- WEff_UFOフォルダを丸ごとmodelsの中にコピー

Tips: MadGraph "batch mode"

mg5_aMCで入力するコマンドをテキストファイルに書いておく

• terminalで (MG)/bin/mg5_aMC step1.mg5 と入力

step1.mg5 | import WEff_UFO | generate p p > wp+ > u d~ | output wprime ←

wprimeフォルダ – が生成される

- param_card.dat や run_card.dat を編集 (wprime/Cardsの中)
- terminalで (MG)/bin/mg5_aMC step2.mg5 と入力

step2.mg5	launch wprime done	(一つ目のdoneの後) setコマンドで
	done	card編集も可能

Tips: decay widths

width.mg5

import WEff_UFO
compute_widths wp- --body_decay=2 --output=./param_card.dat

- (MG)/bin/mg5_aMC width.mg5 を実行するとparam_card.dat が 生成される
- すでにあるparam_cardを指定するには--pathを使う
- これを wprime/Cards にコピーして使う

Tips: install packages

- detector simulationをやるためにはpythia-pgsとか必要
- (MG)/bin/mg5_aMCを実行してinstallと打つとインストー ル可能なリストが出てくる

> install pythia-pgs> install Delphes

step2を以下のように変更(例:Delphesを使用する)

CalcHEP

MadGraphと同じことができる

http://theory.sinp.msu.ru/~pukhov/calchep.html

- Code downloadからcalchep_***.tgzを手に入れる
 - > make
 - > ./mkWORKdir wprime
- wprime/modelsの中にWEff-CHの中身をコピー
 extlib1.mdl, func1.mdl, lgrng1.mdl, prtcls1.mdl, vars1.mdl
- wprimeフォルダにある calchep を実行
- けれども、CalcHEPの使い方の説明はしません

Sample models

次はmicrOMEGAsのためにdark matterモデルを選択

- 配布した中にあるHiggsPortalフォルダ
- DM.frがモデルファイル(詳細略) 注意:DMの名前は "~" から始めなければいけない
- <u>MathematicaでDM.nbを実行すると以下が生成される</u>
 - 1. Higgs-portal_FA: FeynArts
 - 2. Higgs-portal_UFO: MadGraph, Herwig++
 - 3. Higgs-portal-CH: CalcHEP, micrOEMGAs

micrOMEGAs

dark matterの各種計算ツール

https://lapth.cnrs.fr/micromegas/

- 左のDownload and Installに行ってDOWNLOAD
 - > make
 > ./newProject HiggsPortal
- HiggsPortal/work/modelsにHiggs-portal-CHの中をコピー extlib1.mdl, func1.mdl, lgrng1.mdl, prtcls1.mdl, vars1.mdl
- HiggsPortalフォルダの中でmake (main.cがコンパイル)

micrOMEGAs

- パラメータファイルを指定して計算を実行
 - > ./main input.par

どのようなパラメータがあるかはvars1.mdlを参照

relic abundanceとかdirect/indirect detectionとかを計算
 → 詳細はマニュアル

main.c

Keys to switch on various modules of micrOMEGAs ----*/ #define MASSES_INFO /* Display information about mass spectrum */ #define OMEGA /* Calculate relic density and display contribution of individual channels */ #define INDIRECT_DETECTION /* Compute spectra of gamma/positron/antiprotons/neutrinos for DM annihilation; Calculate <sigma*v>; Integrate gamma signal over DM galactic squared density for given line of sight: Calculate galactic propagation of positrons and antiprotons. */ //#define RESET_FORMFACTORS /* Modify default nucleus form factors, DM velocity distribution, A-dependence of Fermi-dencity */ #define CDM_NUCLEON /* Calculate amplitudes and cross-sections for CDM-mucleon collisions */ //#define CDM_NUCLEUS /* Calculate number of events for 1kg*day and recoil energy distibution for various nuclei */ #define NEUTRINO /* Neutrino signal of DM annihilation in Sun and Earth */ #define DECAYS

//#define CROSS_SECTIONS

/*==== end of Modules =====*/

/*==== Options ======*/
/*#define SHOWPLOTS*/
 /* Display graphical plots on the screen */

/*==== End of DEFINE settings ===== */

計算の必要のない内容は #defineをコメントアウト

main.c

```
int main(int argc,char** argv)
{ int err;
   char cdmName[10];
   int spin2, charge3,cdim;
                                                                                    unitary gaugeの場合 = 1
  ForceUG=0; /* to Force Unitary Gauge assign 1 */
 VZdecay=1; VWdecay=1;
 if(argc==1)
  ł
     printf(" Correct usage: ./main <file with parameters> \n");
     printf("Example: ./main data1.par\n");
     exit(1):
  }
 err=readVar(argv[1]);
  if(err==-1)
                 {printf("Can not open the file\n"); exit(1);}
  else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(1);}
 err=sortOddParticles(cdmName);
 if(err) { printf("Can't calculate %s\n",cdmName); return 1;}
  if(CDM1)
  Ł
    qNumbers(CDM1, &spin2, &charge3, &cdim);
    printf("\nDark matter candidate is '%s' with spin=%d/2 mass=%.2E\n",CDM1, spin2,Mcdm1);
    if(charge3) printf("Dark Matter has electric charge %d/3\n",charge3);
    if(cdim!=1) printf("Dark Matter is a color particle\n");
 }
 if(CDM2)
    qNumbers(CDM2, &spin2, &charge3, &cdim);
    printf("\nDark matter candidate is '%s' with spin=%d/2 mass=%.2E\n",CDM2,spin2,Mcdm2);
    if(charge3) printf("Dark Matter has electric charge %d/3\n",charge3);
     if(cdim!=1) printf("Dark Matter is a color particle\n");
 }
```

main.c

```
#ifdef OMEGA
{ int fast=1;
 double Beps=1.E-4, cut=0.01;
 double Omega;
 int i,err;
  printf("\n==== Calculation of relic density =====\n");
 if(CDM1 && CDM2)
   Omega= darkOmega2(fast,Beps);
  /*
    displayFunc(vs1120F, Tend, Tstart,"vs1120F");
    displayFunc(vs2200F, Tend, Tstart, "vs2200F");
    displayFunc(vs1100F, Tend, Tstart, "vs1100F");
    displayFunc(vs1210F, Tend, Tstart, "vs1210F");
    displayFunc(vs1122F, Tend, Tstart, "vs1122F");
    displayFunc(vs2211F, Tend, Tstart, "vs2211F");
    displayFunc(vs1110F, Tend, Tstart,"vs1110F");
    displayFunc(vs2220F, Tend, Tstart, "vs2220F");
    displayFunc(vs1112F, Tend, Tstart,"vs1110F");
    displayFunc(vs1222F, Tend, Tstart, "vs1222F");
    displayFunc(vs1220F, Tend, Tstart, "vs1220F");
    displayFunc(vs2210F, Tend, Tstart, "vs2210F");
    displayFunc(vs2221F, Tend, Tstart, "vs2221F");
   displayFunc(vs1211F, Tend, Tstart,"vs1211F");
  */
   printf("Omega_1h^2=%.2E\n", Omega*(1-fracCDM2));
   printf("Omega_2h^2=%.2E\n", Omega*fracCDM2);
  } else
  { double Xf;
     Omega=darkOmega(&Xf,fast,Beps);
     printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
     printChannels(Xf,cut,Beps,1,stdout);
     printf("omega_h^2 = %.2E\n", Omega);
 }
3
```

relic abundanceの計算 結果:Ωh²

後半はdirect detectionや indirect detection

FeynArts

diagramを生成してamplitudeを解析的に計算する

http://www.feynarts.de/ http://www.feynarts.de/formcalc/

- それぞれ"You can download the following files"の下から
 FeynArts-***.tar.gzとFormCalc-***.tar.gzを手に入れる
- feynrulesと同じように\$Pathの通った場所に解凍する
 ここでは ~/Library/Mathematica/Applications
- FeynArts-***やFormCalc-***フォルダのリンクを張る
 > In -s FeynArts-*** FeynArts
 > In -s FormCalc-*** FormCalc
- FormCalc-***の中で ./compile を実行する

Feynrules → FeynArts

- FeynArts-***/Modelsの中にHiggs-portal_FAにある Higgs-portal_FA.gen, Higgs-portal_FA.modをコピー
- FA-sample.nbの中でInsertFieldsの所にHiggs-portal_FAを指定

```
ins = InsertFields[
   CreateTopologies[0, 1 → 2, ExcludeTopologies → {}], {S[1]} → {S[99], S[99]},
   GenericModel → "Higgs-portal_FA", Model → "Higgs-portal_FA",
   InsertionLevel → {Classes},
   ExcludeParticles → {V[1], V[2], V[3], U}];
```

FA-sample.nbを実行するとHiggs invisible widthを計算!
 (FeynArtsとかFormCalcの詳細はマニュアル)

Exercises

- W' modelで2 jetのinvariant mass分布を描いてみる
 - 入力したパラメータと比較してどうなっているか?
- Higgs-portal DM modelでrelic abundanceを計算してみる

