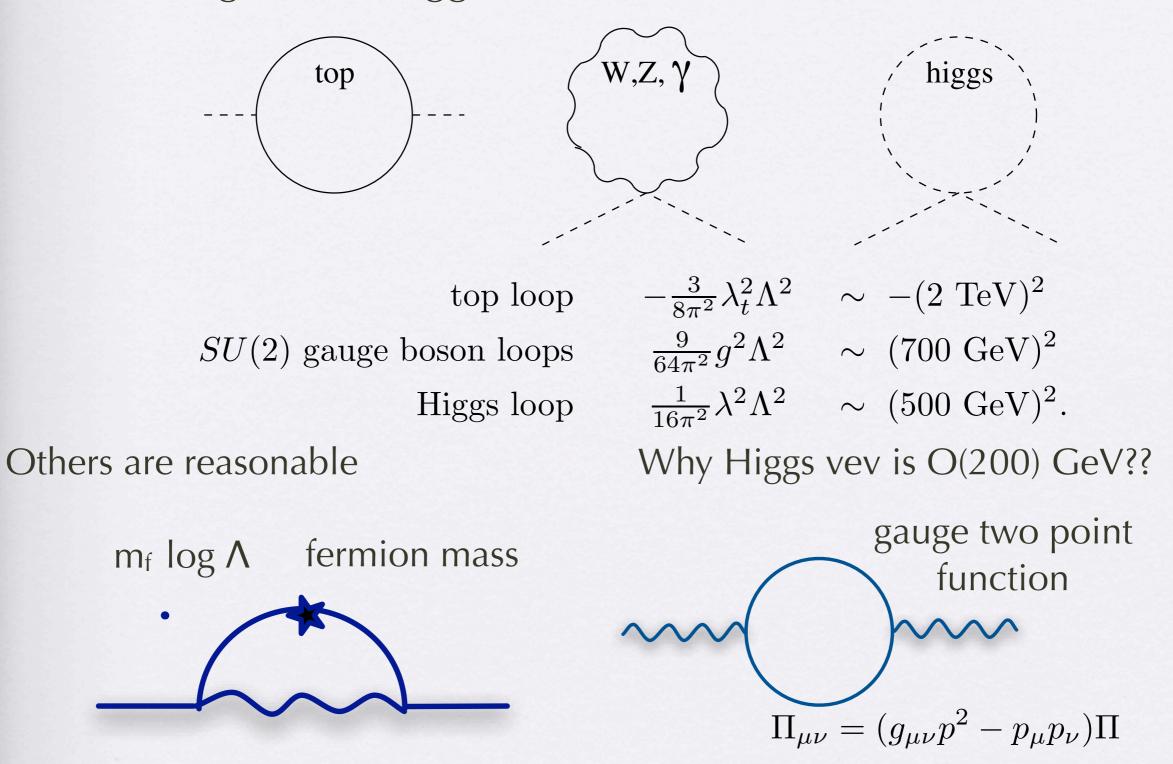
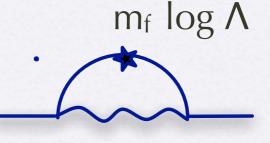

DM and new physics

What is the connection to DM and LHC


- In the big-bang senario DM must be produced at high energy collisions. LHC, pp collider at 14 TeV make a collision of particle at 1 TeV
- Standard model has hierarchy problem. To solve this the modification of gauge and top sector required.

Observation of DM production at LHC


New Physics, Clue

Fine tuning in the Higgs sector

New Symmetry →New Particle

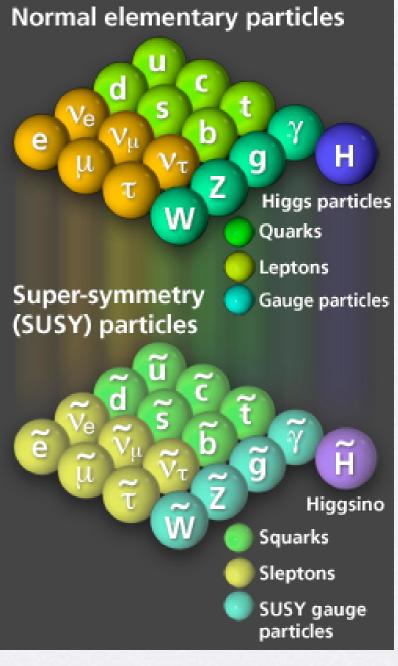
- Need control on the radiative correction to the Higgs sector
- ideas
 - chiral symmetry (extended to boson sector)
 - global symmetry(little Higgs model)
 - gauge symmetry (gauge higgs unification)
- Or planck scale is low (Extra dimension model)
- On the other hand< we see no effect of BSM in radiative correction $\delta L = \frac{(h^{\dagger}D_{\mu}h)^2}{\Lambda^2}$ $\Lambda > 5 \text{TeV}$

Classic Solution:Supersymmetry

- exchange boson and fermion. $\phi \leftrightarrow \psi$
 - sfermions(0), gaugino(1/2), higgsinos(1/2)
- SUSY change "dimension" (1 for boson 3/2 for fermion), relate mass and couplings

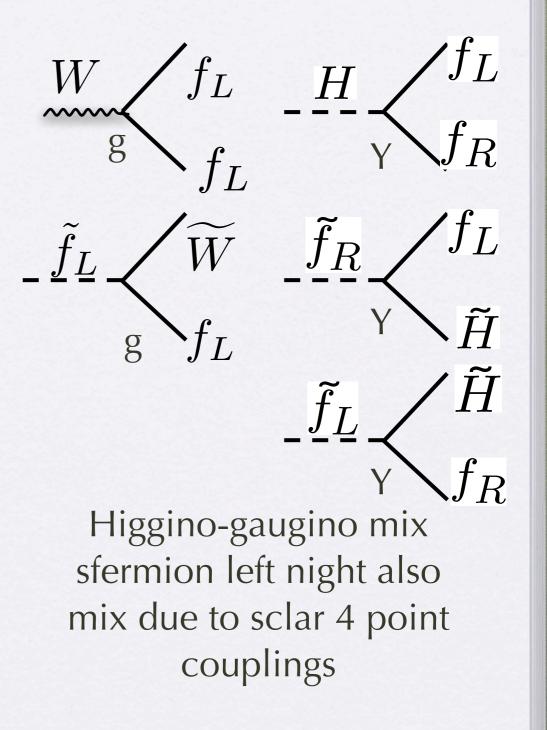
 $\Phi = \frac{1}{g^2} + M\theta^2 \qquad \Phi WW = \frac{1}{g^2}F_{\mu\nu}F^{\mu\nu} + M\tilde{g}\tilde{g}$ • chiral symmetry is extended to boson sector. No new demension less coupling and no quadratic divergence

$$\lambda \psi_L \psi_R H \to \lambda \phi_L \psi_R \tilde{H} + \lambda \psi_L \phi_R \tilde{H}$$


R parity conservation. New stable particle → DM candidate.

matter content of MSSM

	quark	squarks	Normal elemen
$(3,2)_{1/6}$	$q_L = (u, d)_L$	$\tilde{q}_L = (\tilde{u}_L \tilde{d}_L)$	d
$(3^*, 1)_{-2/3, 1/3}$	u^c, d^c	$ ilde{u}^c, ilde{d}^c$	e μ ^ν θνμντ
	lepton	slepton	τ
$(1,2)_{1/2}$	$l_L = (\nu, e)_L$	$\tilde{l}_L = (\tilde{\nu}_L, \tilde{e}_L)$	Super-symmetr
$(1,1)_1$	$l_R = e_R^c$	$ ilde{e}_R^c$	(SUSY) particles
	higgsino	higgs	$\sim \widetilde{V}_{e} \stackrel{\widetilde{d}}{\sim} \widetilde{S}$
$(1,2)_{-1/2}$	$(\tilde{H}_1^0, \tilde{H}_1^-)$	$H_1 = (H_1^0, H_1^-)$	$\stackrel{e}{\widetilde{\mu}} \widetilde{\widetilde{v}}_{\tau} \widetilde{\widetilde{v}}_{\tau}$
$(1,2)_{1/2}$	$(\tilde{H}_2^+ \tilde{H}_2^0)$	$H_2 = (H_2^+, H_2^0)$	
vector multilets	•		


vector multilets

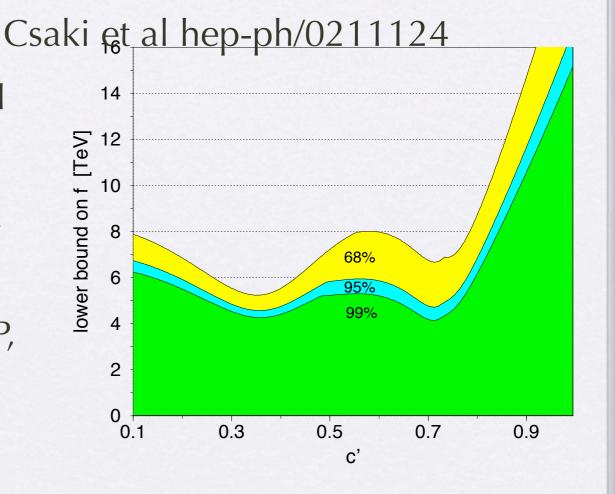
 $G_{\mu}, W_{\mu}, B_{\mu} \leftrightarrow \tilde{G}, \tilde{W}, \tilde{B}$ (gluino, wino, bino) gravity $\tilde{\psi}^{\mu}$ (gravitino), $g_{\mu\nu}$ (graviton)

R parity, SUSY relation

- R parity conservation
 - SUSY particles will be pair produced.
 - SUSY particles decay into SUSY particles
- There are no new dimension less couplings
 - gaugino interaction is gauge coupling
 - Higgsino matter interaction is yukawa coupling

Should we only consider SUSY Dynamical symmetry breaking ?

- Technicolor → Little Higgs model
 - Higgs boson is goldstone boson of a large symmetry. $SU(5) \rightarrow SO(5)$
 - Gauge symmetry: $SU(2)_1 x SU(2)_2 x U(1)_1 x U(1)_2$ (g_1, g_2, g'_1, g'_2)
 - quadratic correction to Higgs sector starts from 2 loop
 - top sector must be extended (extra top quark). afterall top-higgs coupling is the source of fine tuning. $\chi = (b_3, t_3, \tilde{t})$ \tilde{t}, \tilde{t}'
- However it is rather difficult to make simple Little Higgs model and LEP data consistent .


LEP Anchor

difficulty comes from tree level Heavy-Light mixing

$$L_2 \to -\frac{g_1 g_2 (g_1^2 - g_2^2)}{4(g_1^2 + g_2^2)} W^a_{\mu L} W^{a\mu}_H h^2 \longrightarrow -\frac{g^2 (s^2 - c^2)^2}{8f^2} W_L W_L h^4$$

 $(W_L^a = sW_1^a + cW_2^a)$

- Various v^2/f^2 corrections. proportional to the coupling difference, $\Delta g = g_1 g_2$
- $M^2(W_H) = (g_1^2 + g_2^2) f^2/4 \sim (gf/2)^2 > 2.7 \text{TeV}$
- f>4TeV m(t')>7TeV, (Hewett et al JHEP, 2003) Fine turning is reintroduced

Little Higgs with T-parity

 gauge groups and matter contents respect T parity. SU(2)₁ ≈ SU(2)₂ U(1)₁ ≈ U(1)₂

- T-odd matters are introduced. Looks like SUSY without gluino
- LEP constraint is weaker.
 - Heavy gauge bosons and triplet higgs boson live in T-odd sector. No tree level mixing
- Need more attempts to construct a model including symmetry breaking sector. (cf. the study of SUSY breaking sector.)
- UED has similar nature.

f (GeV) $m_{T_-} = \lambda_2 f$

1250 1500 1750

2000

Excluded by EW data

1

500

750

1000

The Lesson is

- LEP constraint (small radiative correction)
 - New Physics scale Λ is high, suggesting fine tuning.
 - Need symmetry to cancel divergence
 - top partner → top must be involved in the symmetry.
- "DM" and "radiative correction"→parity structure

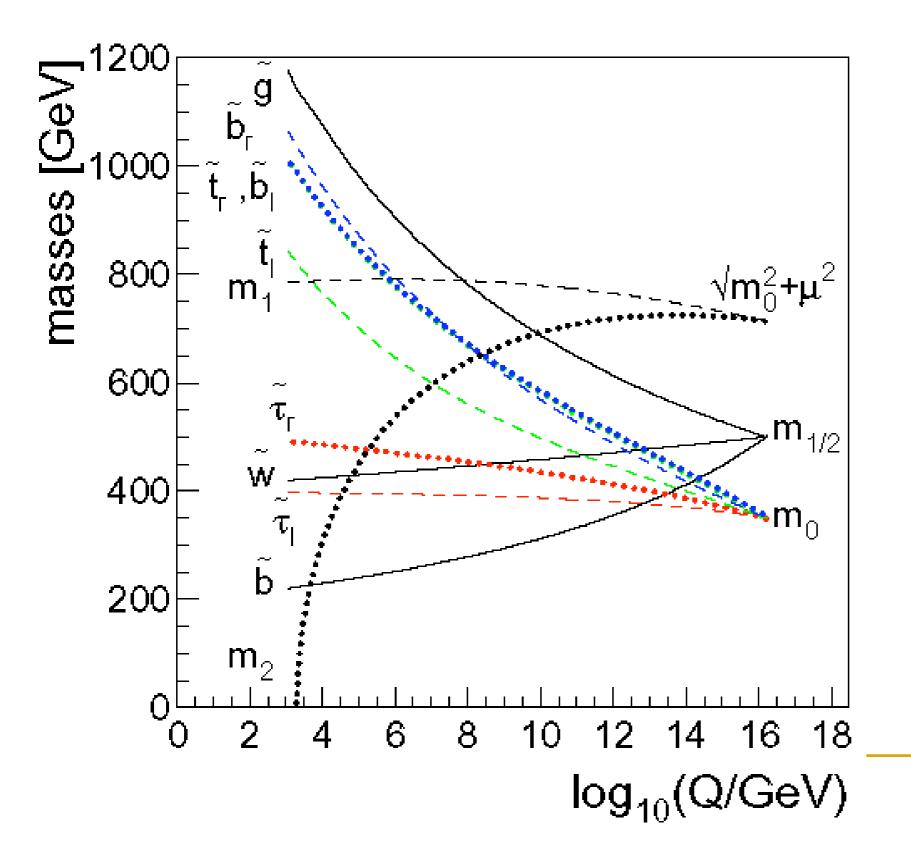
LHC signature:strongly interacting particle decay into DM (and flavor sector involving b quark.....)

Supersymmetry and DM

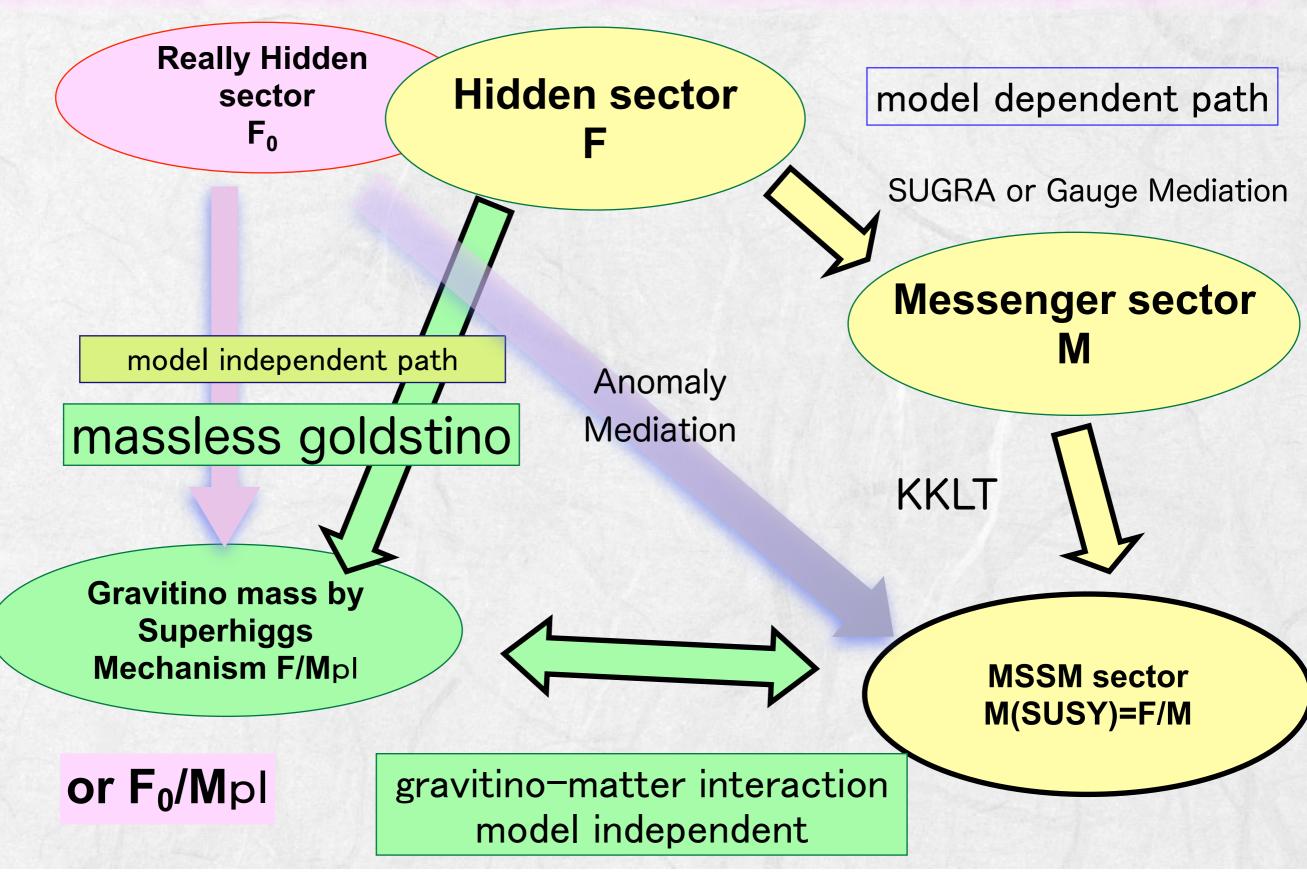
SUSY mass spectrum

Radiative correction due to the gauge interactions. Strongly interacting particles are heavy weakly interaction particles are light.

$$\begin{split} m_{\tilde{q}L}^2 &= m_0^2 + 4.5 M_{1/2}^2 \\ m_{\tilde{l}L}^2 &= m_0^2 + 0.5 M_{1/2}^2 \\ m_{\tilde{l}R}^2 &= m_0^2 + 0.16 M_{1/2}^2 \end{split}$$


Low energy mass spectrum of SUSY particles

Common scalar mass m0 common gaugino mass M1/2 at Unification scale.


working assumption

Yukawa interaction mass difference among generations, Effects on generation mixing of SUSY particles

Radiative Symmetry Breaking

Supersymmetry-a picture

SUSY breaking scenarios and mass spectrum

- Low energy phenomenology is not the end of the story .
- Hidden sector break supersymmety. "flavor and CP" problem
 - gravity mediation, gauge mediation, anomaly mediation(string inspired mixed cases), "geometric separation"

Rich Field!

- Problems (why alternatives are searched for)
 - Light higgs boson (hope and/or worry) little hierarchy
 - DM constraints
 - gravitino, string moduli.....

DM candidate in SUSY neutralino LSP

- a neutralino is a mixture of gauginos and Higgsinos
- • Ω(th)h2~0.1
 ⇒ light slepton, Higgs exchange, or gaugino-higgsino mixing , light connihilation.

gravitino LSP

- no prediction on the density.
- direct detection is not possible
- need additional trick to explain cosmic ray anomaly. (for example R parity violation --later)
- sneutrino essentially excluded
 But in general, it is good to have
 a DM candidate in the model

17

The nature of the Lightest Neutralino

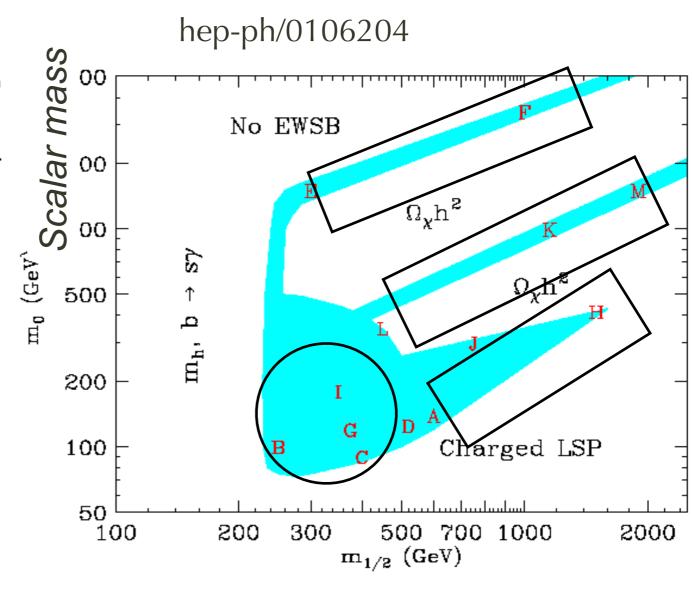
Neutralino mass matrix

$$M = \begin{pmatrix} M_{1} & 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} \\ 0 & M_{2} & m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ 0 & -\mu \\ -\mu & 0 \end{pmatrix} \overset{\tilde{B}}{H_{1}} \\ \tilde{H}_{2} \\ M_{1} \ll \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/m_{\tilde{l}}^{4} \\ M_{1} \gg \mu & \sigma v \propto 1/m_{\tilde{\chi}}^{2} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{100}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2_{10}} \\ M_{1} \sim \mu & \sigma v \propto m_{\tilde{\chi}}^{2}/(4m_{\chi}^{2} - m_{H}^{2})^{2$$

DM density constraint is important in "MSUGRA"

1)bulk: LSP is Bino like. Slepton exchanges fix the density •

 $\Omega h^2 \propto m_{\tilde{l}}^4/m_{\tilde{\chi}}^2$


too large mass density

2)Higgs pole effects $m_H=2m_\chi$

3) coannihilation region

 $ilde{ au} ilde{\chi}$

4)focus point region: higgsino-gaugino mixing

Gaugino mass

Target at LHC

- finding LSP
- measure gaugino and chargino masses to fix M1, M2, μ, tanβ
- stau masses.
- measure HIggs mass (especially heavy ones)
- gravitino? (if I have a time)