理論屋さん向けの検出器入門

第1回 Particle ID

第2回コライダー勉強会 2015.11.26

- 2 Particle ID
- 検出器の原理はいいから、シミュレーションで使えそうな基礎
- なんでそういう構造を選定したのか等、苦労話・裏話は省く
- 実験屋さんが常識的に知ってる検出器の豆知識を
- 理論屋さんと実験屋さんで話しているときに、「えっ?!・・・^^;)」とならないために
- BUT,今日いる方々は結構実験寄りの方々なので、釈迦に説法になる可能性あり。「そんなの知ってる」って言わないでくださいね。
- ATLAS検出器にかなり偏ります

●基本中の基本

・基本となる物質との相互作用

●磁石

•飛跡検出(運動量測定)

エネルギー測定

•粒子識別

粒子識別の基本

- 利用する力:電磁力(ハドロン反応を使うものも有り)
- 検出可能な粒子: 比較的安定なもの(検出器の大きさ以内の崩壊長をもつ)
- 測りたいもの
 粒子の4元運動量
- $ec{E},ec{p},ec{v},M$ の内2つが 分かれば決まる
- 曲げて測るか (運動量 p)
- 吸収させて測るか (エネルギー E)
- 通過時間で測るか (TOF v)
- 不変質量組むか、もともと知ってるか (m)

Particle ID

よく使う関係式

$$E=\gamma m, ~~\midec{p}\mid=eta E=eta\gamma m$$

$$\boldsymbol{\gamma} = rac{1}{\sqrt{1 - \boldsymbol{\beta}^2}}$$
 (ローレンツ因子)
Lorentz factor

速度βで移動している質量mの粒子を想定し、 その粒子の静止系K'を考える。K'系では *p'=(m,0,0,0)* ローレンツ変換は

$$\left\{ egin{array}{ll} m=\gamma E-\gammaeta p_x \ 0=-\gammaeta E+\gamma p_x \end{array}
ight.$$
解くと上式が得られる

荷電粒子の基本相互作用

- イオン化損失(Bethe-Blochの式):一番の基本
 ⇒ 次ページ
 - 電磁相互作用
 - 物質をイオン化/励起しエネルギーを失う(原子中の電子を弾き飛ばす)
 - β(=v/c) 速度だけの関数

ミューオン、パイオンなど 1 GeV 超えたら余り エネルギー落とさない (検出器を貫通)

電子は特別

電子の場合

(2) は

上式は

①イオン化損失の他に ② 原子核から受ける電場の影響で 加速度をうけ制動放射(ブレムス: bremsstrahlung = breaking radiation (英)) によりエネルギーを落とす

光子放出割合 \propto 加速度² \propto (z/m)² 電子には大きな効果

MIP上り高いエネルギーでは

 $\left(\overline{dx}\right)_{RAD} = -\overline{X_0}$

 $oldsymbol{E}=oldsymbol{E}_{_{
m O}}oldsymbol{e}^{-x/X_{_{
m O}}}$

 $(\mathbf{X}_{0}^{-0}\mathbf{X})$ (cm^2g^{-1}) Bremsstrahlung $\frac{dE}{dx}$ 0.10Ionization 0.5Møller (e⁻) 0.05Bhabha (e^+) Positron annihilation 10 1001000 E (MeV) 電子のエネルギー損失

Critical Energy (物質による)

Lead (Z = 82)

Fositrons

Electrons

0.20

電子のエネルギーに対する相対値

① はBethe-Blochよりほぼ一定
$$\left(\frac{dE}{dx}\right)_{ION} \sim const$$

高エネルギーでは②が優勢 (一定の割合でエネルギーを失う)

X。を放射長という(Eが1/e~0.37になる距離)

Particle ID

8

曲げて測る系

磁場はどうかかっているか

InnerとOuterで磁場の方向が切り替わる 特にOuterの磁場は複雑 カロリメータには磁場かかってない

InnerではΦを測る outerではdR(or dZ)を測る

Particle ID

磁場はどうかかっているか(続き)

CMSは全てソレノイド磁石 ミューオン検出器の鉄(赤い箇所)がリターンヨーク 磁場の向きがコイルの内・外で逆転 磁場中で円運動
 磁場に垂直な運動量成分←曲率半径R測定

 $\boldsymbol{p}_{T}[\text{GeV}] = 0.3 \cdot \boldsymbol{B}[\text{T}] \cdot \boldsymbol{R}[\text{m}]$

単位に注意:円運動の釣り合いの式からでてくる 1[T]=1[V·s/m²]の関係を使う

• 実用では円を描けない。サジッタ(s)を使う

多層ある場合は精度が上がる

検出可能な運動量

- ATLAS カロリメータに届くため必要な p_Tは?
 - ぎりぎり届くとき R=0.5m, B=2T

 $\boldsymbol{p}_{T}[\text{GeV}] = 0.3 \cdot \boldsymbol{B}[\text{T}] \cdot \boldsymbol{R}[\text{m}]$

 p_{Tmin}=0.3GeV (tracking自体は0.1GeV 程度まで原理的に可能) 1m

- CMSの場合 R=1.3m/2 B=4T
- p_{Tmin}=0.78GeV

PIXEL, SCT, TRT

長さ単位 µm

IBL PIXEL (silicon pixels) total 9000万チャンネル one Pixel: 50 x 400 (250) 位置分解能: 12 x 60

SCT (silicon strips) total 600万チャンネル strip size: 80 x 120000 位置分解能: 16 x 580

TRT (gas tube) total 30万チャンネル tube size: 4000 x 740000 位置分解能: 170

-d/2~d/2で分散を計算すればよい

- 隣り合って何ヶ所かヒット(クラスタと呼ぶ)
 落とした信号の大きさで重み平均 → 0.3d よりも良くなる
- TRTの場合

信号の観測時間=粒子通過時間 +ドリフト時間(芯線からの距離の関数)

• 多層を通過した時間(粒子で共通)を利用してトラック・フィット

ミューオン検出器

- ミューオン: 突き抜ける (カロリメータに数GeVは落とすが)
 - 崩壊長は βγcτ 1GeV のミューオンは

 $\beta \sim 1$, $\gamma = E/m \sim p/m \sim 10$, $\tau \sim 2.2 \mu sec$, $1 n sec \times c = 0.3 m$ L = $\beta \gamma c \tau \sim 10 \times 2.2 \times 10^3 \times 0.3 m \sim 6 \times 10^3 m$

LHCのバンチ間隔: 25nsec ~ 7.5m(検出器内に3BC共存:長生き系を扱うときは注意)
 2BC

η

内部飛跡検出器(宇宙線、MC)

Eur. Phys. J. C (2010) 70: 787

18 Particle ID

吸収して測る系

γ線と物質の相互作用

- 高エネルギーでは電子・陽電子対生成だけ気にすればよい (コンプトン、光電吸収は1MeV以下で支配的)
- 1GeV以上ではほぼ100%対生成で、
 変換長もほぼ一定

$$\boldsymbol{X}_{p}=rac{9}{7}\boldsymbol{X}_{0}$$

変換長は少しだけ放射長より長い

変換長は光子フラックスが1/eになる距離 放射長は荷電粒子エネルギーが1/eになる距離

大事なのはこの2つが同じスケールであること

物質によって X_0 は違う。粒子の飛んだ方向にどれだけ物質があるかをこの X_0 で表す(物質量=budgetを共通通貨で表す)

電磁シャワー縦方向の広がり

• 高エネルギー電子、光子が入射すると電磁シャワー発生

シャワーの縦方向の長さ $\propto \ln E_0$

(*In* で効く、Eが10倍になっても、シャワー 長さ~2.3なので電磁カロリメータの深さを 10倍にする必要はない)

shower max後は指数関数的に減少
 シャワーの全エネルギー=測定可能
 全シャワーを捉えるには~25X₀の厚さが欲しい

• シャワーの簡易モデル(電子)

- ・ 厚さ $t = x / X_0$, $\sim 1X_0$ 進む度に粒子数2倍
- shower maxの時にt=tmaxだとすると
 その時のエネルギーがE_cだとして解く

$$egin{aligned} & N(t) = 2^t \ & E(t) = E_0 \ & I \end{pmatrix} & N(t) = E_0 2^{-t} \ & E(t_{\max}) = E_0 2^{-t \max} \equiv E_C \ & t_{\max} = \ln igg(rac{E_0}{E_C} igg) igg/ \ln 2 \propto \ln E_0 \end{aligned}$$

ハドロンと物質の反応

- 高エネルギーハドロン、核破砕反応→たくさんの粒子
- 同様にカスケードシャワーを起こす 止まるのはE<2m_πまで落ちたときd

WA78 : 5.4λ of 10mm U / 5mm Scint + 8λ of 25mm Fe / 5mm Scint NIM A263 (1988)102

全エネルギーを評価するためには、シャワー 全体を覆う必要がある。およそ 10λの深さが ないと、エネルギーを逃してしまう

エネルギー測定

- 全吸収型では(通常)シャワーが止まらないので、
 Absorbers(鉛or鉄)をDetectorsにサンドイッチ状に挟む
- サンプリング型カロリメータと呼ぶ (CMSのEM Callは全吸収型)

全部測ってるわけではない でもOK アトラス実験ハドロンカロリメータ の模式図、光ファイバーで 両面から読み出している

- a: 確率論的な項(Stochastic term)
 - サンプリング型ならサンプル比に関係
 - 全吸収型はこの項が小さい
- b: ノイズからの寄与
 - 電気的なノイズ 、パイルアップによるノイズ 等
 - 高エネルギーでは気にならなくなる
- c: 定数項
 - 検出器が持つ本来の分解能(均一性等)
 - 高エネルギーでこの項が主に効く

電磁カロリメータ

 $=\oplus \frac{b}{-}\oplus c$ σ a E E E

25 Particle ID

検出器各コンポーネントの大きさ

0.1 radian = 5.7度 0.003 radian = 0.17度

隣り合うヒット・セルをつなげたもの: 「クラスター」

光子に関する話

- カロリメータ前の物質量
 γ-conversion (電子対生成)
 を起こす
- 2-6割(|η|依存性)

< 115 cm

O R < 80 cm</p>

0.5

Fraction of converted photons

0.9

0.7

0.5

0

0

0.

Figure 10.43: Fraction of photons converting at a radius of below 80 cm (115 cm) in open (full) circles as a function of $|\eta|$.

1.5

- early conversion (SCT2段目前)に
 ついてはconversion再構築から見積もれる
- 再構成したphotonはconverted-photon
 として使う(それ以外はunconverted-photon)

e/γの再構成

electron/photonのパフォーマンス

- 非常に雑多な条件の組み合わせ(頻繁にUpdate)
- 通常、松竹梅コースを用意
 選び方:上位グループのお達し、前回のpaperで使ってたから、何か理由がある

まとめ

- Fast simulationで気をつけること
 - 大まかな分布作り、数を評価する上ではとても便利
 - 弱点:物質量に影響される物理、統計が余りない物理 信号読み出しのタイミング等を気にする事象、 背景事象の見積り(特にfakeからくるreducible) (基本的にFull simulationでも自信がない話は全て)
- 本日カバーしていないこと
 - ジェット, b-tag, tau
 - Missing Energy
 - トリガー
 - 結果の統計的な扱い