Search for the Θ^+ pentaquark at J-PARC

M. Moritsu (Kyoto University) for the J-PARC E19 collaboration

HYP2012 @ Barcelona, 2012/10/01
Contents

1. Introduction
2. J-PARC E19 experiment
 1. 1st run result
 2. 2nd run analysis status and preliminary result
3. Summary
Pentaquark Ξ^+

- made form five quarks ($qqqq\bar{q}$)
 - allowed combination by QCD.
- No convincing experimental evidence before 2002,
 - despite many searches in particle phys. exp.
- In 2003, SPring8/LEPS group first reported the evidence for Ξ^+,
 - including \bar{s}. \rightarrow At least 5-quark components.
- Dozen experimental groups published supporting evidence for the Ξ^+,
- followed by a number of experiments with no evidence.
A Lot of Θ⁺ Searches

<table>
<thead>
<tr>
<th>Group</th>
<th>Reaction</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>Statistical significance (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEPS</td>
<td>$\gamma C \to K^+K^-(n)$</td>
<td>1540 ± 10</td>
<td><25</td>
<td>4.6</td>
</tr>
<tr>
<td>LEPS</td>
<td>$\gamma C \to K^+K^-(n)$</td>
<td>1524 ± 2</td>
<td><25</td>
<td>5.1</td>
</tr>
<tr>
<td>DIANA</td>
<td>$K^+Xe \to K^0_{s}pX$</td>
<td>1539 ± 2</td>
<td><9</td>
<td>4.4</td>
</tr>
<tr>
<td>DIANA</td>
<td>$K^+Xe \to K^0_{s}pX$</td>
<td>1538 ± 2</td>
<td>0.39±0.1</td>
<td>8</td>
</tr>
<tr>
<td>CLAS(d)</td>
<td>$\gamma d \to K^+K^-p(n)$</td>
<td>1542 ± 5</td>
<td><21</td>
<td>(5.2)</td>
</tr>
<tr>
<td>CLAS(p)</td>
<td>$\gamma p \to \pi^+K^+K^-(n)$</td>
<td>1555 ± 10</td>
<td><26</td>
<td>7.8</td>
</tr>
<tr>
<td>SAPHIR</td>
<td>$\gamma p \to K^+K^0_{n}X$</td>
<td>1540 ± 6</td>
<td><25</td>
<td>4.8</td>
</tr>
<tr>
<td>ITEP</td>
<td>$\nu A \to K^0_{s}pX$</td>
<td>1533 ± 5</td>
<td><20</td>
<td>6.7</td>
</tr>
<tr>
<td>HERMES</td>
<td>$e^+d \to K^0_{s}pX$</td>
<td>1528 ± 3</td>
<td>12±0</td>
<td>4.2</td>
</tr>
<tr>
<td>COSY-TOF</td>
<td>$pp \to K^0_{s}p\Sigma^+$</td>
<td>1530 ± 5</td>
<td><18</td>
<td>4.7</td>
</tr>
<tr>
<td>ZEUS</td>
<td>$e^+p \to e^+K^0_{s}pX$</td>
<td>1522 ± 3</td>
<td>8±4</td>
<td>4.6</td>
</tr>
<tr>
<td>NOMAD</td>
<td>$\nu A \to K^0_{s}pX$</td>
<td>1529 ± 3</td>
<td>2~3</td>
<td>4.3</td>
</tr>
<tr>
<td>SVD</td>
<td>$pA \to K^0_{s}pX$</td>
<td>1526 ± 5</td>
<td><24</td>
<td>5.6</td>
</tr>
<tr>
<td>SVD</td>
<td>$pA \to K^0_{s}pX$</td>
<td>1523 ± 5</td>
<td><14</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Positive results

<table>
<thead>
<tr>
<th>Group</th>
<th>Reaction</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BES</td>
<td>$e^+e^- \to J/\Psi \to \Theta\Theta$</td>
<td>< 1.1 x 10⁻⁵ B.R. (90% C.L.)</td>
</tr>
<tr>
<td>BES</td>
<td>$e^+e^- \to \Psi(2S) \to \Theta\Theta$</td>
<td>< 8.4 x 10⁻⁶ B.R. (90% C.L.)</td>
</tr>
<tr>
<td>ALEPH</td>
<td>$e^+e^- \to Z \to pK^0_sX$</td>
<td>< 6.2 x 10⁻⁴ B.R. (95% C.L.)</td>
</tr>
<tr>
<td>BarBar</td>
<td>$e^+e^- \to \Upsilon(4S) \to pK^0_sX$</td>
<td>< 1.0 x 10⁻⁴ B.R. (90% C.L.)</td>
</tr>
<tr>
<td>BarBar</td>
<td>$eBe \to pK^0_sX$</td>
<td>not given</td>
</tr>
<tr>
<td>Belle</td>
<td>$e^+e^- \to B^0\bar{B}^0 \to p\bar{p}K^0_sX$</td>
<td>< 2.3 x 10⁻⁷ B.R. (90% C.L.)</td>
</tr>
<tr>
<td>Belle</td>
<td>$K^+n \to K^0_s\bar{p}X$</td>
<td>$\Gamma < 0.64MeV$ (90% C.L.)</td>
</tr>
<tr>
<td>CDF</td>
<td>$p\bar{p} \to K^0_spX$</td>
<td>< 0.03 x Λ^* (90% C.L.)</td>
</tr>
<tr>
<td>SPHINX</td>
<td>$pC \to K^0_spX$</td>
<td>< 0.1 x Λ^* (90% C.L.)</td>
</tr>
<tr>
<td>HERA-B</td>
<td>$pA \to K^0_spX$</td>
<td>< 2.7% x Λ^* (95% C.L.)</td>
</tr>
<tr>
<td>HyperCP</td>
<td>$pCu \to K^0_spX$</td>
<td>< 0.3% K^0_sp</td>
</tr>
<tr>
<td>FOCUS</td>
<td>$\gamma BeO \to K^0_spX$</td>
<td>< 0.02 x Σ^* (95% C.L.)</td>
</tr>
<tr>
<td>PHENIX</td>
<td>$dAu \to K^-n\bar{X}$</td>
<td>not given</td>
</tr>
<tr>
<td>WA89</td>
<td>$\Sigma^+A \to K^0_spX$</td>
<td>< 1.8µb/Λ (99% C.L.)</td>
</tr>
<tr>
<td>CLAS</td>
<td>$\gamma p \to K^0_sK^+n$</td>
<td>< 0.8 nb (95% C.L.)</td>
</tr>
<tr>
<td>CLAS</td>
<td>$\gamma d \to K^-pK^+n$</td>
<td>< 0.15 – 3 nb (95% C.L.)</td>
</tr>
<tr>
<td>CLAS</td>
<td>$\gamma d \to K^+n\Lambda$</td>
<td>< 5 – 25 nb (95% C.L.)</td>
</tr>
<tr>
<td>COSY-TOF</td>
<td>$pp \to \Sigma^+pK^0_s$</td>
<td>< 0.15µb/Λ (95% C.L.)</td>
</tr>
<tr>
<td>NOMAD</td>
<td>$\nu A \to K^0_spX$</td>
<td>< 2.13 x 10⁻⁵νCC (90% C.L.)</td>
</tr>
</tbody>
</table>

Negative results
A Lot of Θ^+ Searches

<table>
<thead>
<tr>
<th>Group</th>
<th>Reaction</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>Statistical significance (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEPS</td>
<td>$\gamma C \rightarrow K^+K^-$</td>
<td>1540 ± 10</td>
<td><25</td>
<td>4.6</td>
</tr>
<tr>
<td>LEPS</td>
<td>$\gamma C \rightarrow K^+K^-$</td>
<td>1524 ± 2</td>
<td><25</td>
<td>5.1</td>
</tr>
<tr>
<td>DIANA</td>
<td>K^+Xe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIANA</td>
<td>K^+Xe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLAS(d)</td>
<td>$\gamma d \rightarrow K^0\pi^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLAS(p)</td>
<td>$\gamma p \rightarrow K^0\pi^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAPHIR</td>
<td>$\gamma p \rightarrow K^0\pi^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEP</td>
<td>$\nu A \rightarrow K^0\pi^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERMES</td>
<td>$e^+d \rightarrow K^0\pi^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSY-TOF</td>
<td>$pp \rightarrow K^0\pi^0$</td>
<td>1556 ± 9</td>
<td><16</td>
<td>4.1</td>
</tr>
<tr>
<td>ZEUS</td>
<td>$e^+p \rightarrow e^+K^0\pi^0$</td>
<td>1522 ± 3</td>
<td>8 ±4</td>
<td>4.6</td>
</tr>
<tr>
<td>NOMAD</td>
<td>$\nu A \rightarrow K^0\pi^0$</td>
<td>1529 ± 3</td>
<td>2–3</td>
<td>4.3</td>
</tr>
<tr>
<td>SVD</td>
<td>$pA \rightarrow K^0\pi^0$</td>
<td>1526 ± 5</td>
<td><24</td>
<td>5.6</td>
</tr>
<tr>
<td>SVD</td>
<td>$pA \rightarrow K^0\pi^0$</td>
<td>1523 ± 5</td>
<td><14</td>
<td>8.0</td>
</tr>
</tbody>
</table>

- **Not well established in experiments**
 - “Must confirm the existence/non-existence of Θ^+ at first”

- **Positive results**
 - Low energy hadronic reaction (π or K beam)
 - Few data
 - Expect sizable production cross section.
 - Complementary to the photo-production.
**👶 search by high-resolution spectroscopy
via \(\pi^- + p \rightarrow K^- + \Theta^+ : \) J-PARC E19

Previous KEK-PS E522 experiment
- Is this a sign of \(\Theta^+ \)?
 - Not enough sensitivity
 - They did not conclude the evidence of \(\Theta^+ \).
- Mass resolution
 \(\Delta M \sim 13.4 \text{ MeV (FWHM)} \)

J-PARC E19 experiment
- Same reaction as E522
- High resolution: SKS \(\Rightarrow \Delta M < 2 \text{ MeV (FWHM)} \)
- High statistics: High intensity beam at J-PARC

\(\Rightarrow \) Conclusive result by higher sensitivity.

The first physics run at the J-PARC hadron facility!
Experimental setup

K1.8 beam line spectrometer & SKS ⇒ Missing mass spectroscopy

- **K1.8 beam line spectrometer**: p_{π}
 - PID counters
 - Timing counters: TOF
 - Gas Cherenkov (π/e): $n=1.002$
 - Tracking
 - MWPCs: 1 mm pitch
 - MWDCs: 3 mm pitch

- **SKS system**: p_K
 - PID counters
 - Timing counter
 - Aerogel Cherenkov (K/π): $n=1.05$
 - Lucite Cherenkov (K/p): $n=1.49$
 - Tracking
 - MWDCs: 3 mm pitch
 - DCs: 10 mm pitch, 2m × 1m size

- **Target**: Liquid hydrogen
 - ~0.86 g/cm²
 - Free from Fermi motion effect
History of E19

<table>
<thead>
<tr>
<th>Year</th>
<th>Comment</th>
<th>Beam Momentum</th>
<th>Beam Intensity</th>
<th>π’s on Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/10</td>
<td>K1.8 beam line & detector commissioning start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010/10-11</td>
<td>examine the 2.6σ bump structure observed in E522</td>
<td>1.92 GeV/c</td>
<td>1.0 M /spill</td>
<td>7.8 x 10^{10}</td>
</tr>
<tr>
<td>1st RUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012/02</td>
<td>new data at the highest beam momentum at K1.8</td>
<td>2.0 GeV/c</td>
<td>1.7 M /spill</td>
<td>8.7 x 10^{10}</td>
</tr>
<tr>
<td>2nd RUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Successful completion of both 1st and 2nd run
1st run result of E19

\[\pi^- + p \rightarrow K^- + X \@ 1.92 \text{ GeV/c} \]

- **No prominent peak structure**
- **Upper limit:** \(< 0.26 \mu b/sr\)
 @ 1.51–1.55 GeV/c²

Shirotori et al., PRL 109, 132002 (2012).

- **s-channel dominance**
- **\(\Gamma_\Theta \propto g_{\text{KN}\Theta}^2 \propto \sigma_{\text{tot}} \)**
 \(\Rightarrow \) **Upper limit of decay width**

\[\Gamma_{\frac{1}{2}+} \leq 0.72 \text{ MeV} \]
\[\Gamma_{\frac{1}{2}^-} \leq 3.1 \text{ MeV} \]
2nd run of E19

- Beam time: 2012/Feb
- Higher beam momentum 2.0 GeV/c (= Max. of K1.8 B.L.)
- Expecting increased cross section ➔ higher sensitivity

➔ Stringent restriction on the Θ⁺ decay width.

Theoretical calculations:

\[\sqrt{s} \text{ [MeV]} \]

\[J^p=1/2^+, \Gamma_{\Theta^+} = 1\text{MeV} \]

- PV Fs 500MeV
- PV Fc 1800MeV

\[p_{\text{lab}}=2.0 \text{ GeV/c} \]
\[p_{\text{lab}}=1.92 \text{ GeV/c} \]
K1.8 Beam spectrometer

- K1.8 beam line spectrometer: \(p_\pi \)
 - PID counters
 - Timing counters: TOF
 - Gas Cherenkov (\(\pi/e \)): \(n=1.002 \)
 - Tracking
 - MWPCs: 1 mm pitch
 - MWDCs: 3 mm pitch

\(\pi \) is clearly identified using TOF btw 2 sets of hodoscopes

Beam mom. of 2 GeV/c is well reconstructed.

Analysis status of 2\(^{nd}\) run
SKS spectrometer

- **SKS system**: p_K
 - PID counters
 - Timing counter
 - Aerogel Cherenkov (K/π) : $n=1.05$
 - Lucite Cherenkov (K/p) : $n=1.49$
 - Tracking
 - MWDCs : 3 mm pitch
 - DCs : 10 mm pitch, 2m × 1m size

We can separate only K very clearly.

Scattered particle M^2

- **Good momentum reconstruction and PID !!**
Vertex Reconstruction

Vertex-(X vs Y)

Consistent with horizontally oblate beam shape.

Target cell is clearly identified!!
Performance of the spectrometers

- $\pi^+ + p \rightarrow K^+ + \Sigma^+ \quad @ \quad 1.37 \text{ GeV/c}$
- Missing mass resolution:
 \[\Delta M_\Sigma = 2.0 \text{ MeV (FWHM)} \]
 Equivalent to the 1st run!!
 Cf.) $\Delta M_\Sigma = 1.9 \pm 0.1 \text{ MeV} @ E19-1st$

\Rightarrow estimate Θ^+ case:
 \[\Delta M_\Theta = 1.75 \text{ MeV (FWHM)} \]

- Yield estimation (rough):
 Almost Consistent with the 1st run!!

$\Gamma = 2.02 \pm 0.06$

Enough performance!!
Preliminary result of E19-2nd run

Missing Mass : $p (\pi^-, K^-) X \ @ p_\pi = 2.0 \text{ GeV/c}$

- Analysis parameters were not finally tuned yet.
- No clear peak structure was observed.
- Efficiency evaluation is on-going.
- Tentative expected sensitivity $\sim 0.3 \mu b/sr$.
Summary

• J-PARC E19: High-resolution search via $\pi^- p \rightarrow K^- \Theta^+$ reaction
 – The first physics experiment at the J-PARC hadron facility!
 – 1st run result was published in PRL. (@ 1.92GeV/c beam)
 • More than 10 times higher sensitivity than E522.
 • No clear Θ^+ peak \rightarrow < 0.26 μb/sr
 • Strong constraint: $\Gamma < \sim$1 MeV

• 2nd run was successfully carried out. (@ 2 GeV/c beam)
 – Good performance of both K1.8BS and SKS.
 – No clear Θ^+ peak (preliminary)
 – Efficiency evaluation etc. are in progress.