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Introduction
Core collapsed supernovae

● Large scale numerical simulation is essential to understand 
explosion mechanism

– Hydrodynamics
– Boltzmann equation for neutrino transport
– General relativity
– Equation of state of dense matter, neutrino reactions

● Fully 6D simulations are currently restrictive
– Dimensionality plays an essential role for explosion
– Approximations are often used for 2D/3D systematics
– Acceleration of full 2D/3D simulations are waited

● Spherically symmetric system
– Basis for 2D/3D simulations and observations
– Systematic survey of massive stars is necessary
– 1st principle calculation (Full GR + Hydro + Boltzmann)
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Introduction
High performance computing

● Two trends of architecture
● Massively parallel supercomputers

– K-computer → Post-K (2021)
– Intel Xeon Phi
– Preparation for the next generation SC is underway

● Arithmetic accelerators
– GPUs, Pezy-SC
– CPUs + devices: Heterogeneous architecture
– Currently not widely used in SN simulations in spite of large potential

● Application to spherically symmetric system as a testbed

This work: for establishing techniques to exploit heterogeneous 
architectures for supernova simulations
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Implementation
● Numerical setup

– GR Lagrangian hydrodynamics + SN + Implicit scheme

                              S. Yamada, ApJ 475 (1997) 720, A&A 344 (1999) 533

– Ar every step of time evolution, solve a linear equation system
– BiCGStab algorithm for a block tridiagonal matrix

– Rank of each block matrix:
– Weighted Jacobi preconditioner

                                                A. Imakura et al. JSIAM Letter 4 (2012) 41

– This linear equation solver is the first target of offloading 
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Implementation
● Offloading scheme

– Base code: Fortran, MPI parallelized
– C-code as intermediate code (for later convenience)
– Device code is implemented with OpenACC

● Directive-based framework for offloading
● Portable, compatible with OpenMP 4.0

– Multi-GPU: each MPI process handles one GPU device
– Communication via host process

● Two implementations
– “Native” code

● Tuned using OpenACC directives 
● Simple assignement of tasks to threads: each thread compute one row

– cuBLAS code
● Well-tuned BLAS library provided by NVIDIA
● CUDA stream for asynchronous execution (in units of block matrix)
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Machines
● Performance is measured on two machines at KEK

– All arithmetic operations are in double precision
– Compiler: PGI + OpenMPI + CUDA environment

Xeon + Kepler Power8 + Pascal

Host processor Intel Xeon Haswell (6 core) x2 IBM Power8 (10 core) x2

Peak/core (double) 44.8 GFlops/core 22.9 GFlops/core

GPU NVIDIA K40 x2 NVIDIA P100 x4

#core/device (double) 960 1792

Peak/device (double) 1430 GFlops 4700 GFlops

Memory size/device 12 16

Memory B/W 288 GB/s 720 GB/s

bus PCIe Gen2 x16 NVLink (40GB/s x2)
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Problem setup
● Linear equation 

– At each spatial (radial) point r,
● Neutrino dof.: energy, angle, species
● Hydrodynamical dof.: velocty etc. (Nhyd=11)
● Block tridiagonal matrix, each block is dense

     → matrix rank: Nmax = NE*Nang*Nν + Nhyd 

– Nr = 256 → increased to 512, 1024 (preferable)

– Required memory size = Nmax
2 *4*Nr*8 Byte

set-1 set-2 set-3 set-4

Nr 256 256 256 256

NE 14 16 24 32

Nang 6 8 12 16

Nν 4 4 4 4

Nmax 347 523 1163 2059

memory 1 GB 2 GB 9.3 GB 32 GB

Practical choice of Nmax

・  ・  ・・  ・  ・・  ・  ・

r

hydro

neutrino
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Performance result
● MD

-1 : inverse of diagonal blocks (no communication) 

– cuBLAS code tends to be faster at large Nmax region (~x1.5)

– On Pascal, ~140 Gflops/device (3% of peak)
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Performance result
● M – MD  : subdiagonal blocks (with communication)

– Communication overhead is small (~1/Nmax*[Nr/Ndev])
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Acceleration of simulation
● How much is simulation accelerated ?
● Time consuming parts in evolution step

– Dominant: matrix inversion
– Subdominant: neutrino reaction (1/20 of matrix inv.)
– Other parts are (currently) negligible

● GPUs largely accelerate the linear solver
● Now dominant operations are:

– Preparation of matrix (determination of weight parameter)
– Neutrino reaction

→ Next targets of offloading

Result: next page
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Acceleration of simulation
● Speed up

– Elapsed time [sec] is measumred for original and offloaded codes
– Xeon + Kepler: Nrmax=256, Nang=6, Ne=14

– Power8 + Pascal (x4): Nrmax=256, Nang=8, Ne=16

Power/Pascal (Set-2) Np = 16 Np = 4 GPU (cuBLAS)

collision     8.6   35.1

Matrix total 168.0 622.5 45.9

    setup   11.8   43.7 45.0

    Inversion (7 iter) 156.2 578.8   0.9

Xeon/Kepler (Set-1) Np = 8 Np = 1 GPU (cuBLAS)

collision     4.9   40.5

Matrix total 115.5 911.4 46.2

    setup     5.1   40.2 40.8

    Inversion (11 iter) 110.4 871.2   5.4
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Conclusion/outlook
● Conclusion

– Acceleration of 1D neutrino-radiation hydrodynamics code by GPUs
– Efficient development by using OpenACC (+cuBLAS)

● cuBLAS becomes more efficient for larger block matrices, while OpenACC 
also works well

– Large speed up for matrix inversion required in implicit scheme
● GPU performance is not well exploited, but already enough fast
● Other parts are to be accelerated urgently
● Simulations with Nr=1024, Nang=12, NE=24 becomes practical

→ Application to systematic 1D simulations
● Outlook

– Application to 2D, 3D code
– Further optimization and improvement of algorithms
– Pezy-SC
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