
 
共通コードプロジェクト

Hideo Matsufuru

23 March 2017, Tokyo University of Science, Noda, Japan

超新星爆発シミュレーションのための
球対称ニュートリノ輻射流体計算のGPUによる高速化

(II)

Kosuke Sumiyoshi

Annual Meeting of Physical Society of Japan

National Institute of Technology, Numazu College

High Energy Accelerator Research Organization (KEK)



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-2

Introduction
Core collapsed supernovae

● Large scale numerical simulation is essential to understand 
explosion mechanism

– Hydrodynamics
– Boltzmann equation for neutrino transport
– General relativity
– Equation of state of dense matter, neutrino reactions

● Fully 6D simulations are currently restrictive
– Dimensionality plays an essential role for explosion
– Approximations are often used for 2D/3D systematics
– Acceleration of full 2D/3D simulations are waited

● Spherically symmetric system
– Basis for 2D/3D simulations and observations
– Systematic survey of massive stars is necessary
– 1st principle calculation (Full GR + Hydro + Boltzmann)



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-3

Introduction
High performance computing

● Two trends of architecture
● Massively parallel supercomputers

– K-computer → Post-K (2021)
– Intel Xeon Phi
– Preparation for the next generation SC is underway

● Arithmetic accelerators
– GPUs, Pezy-SC
– CPUs + devices: Heterogeneous architecture
– Currently not widely used in SN simulations in spite of large potential

● Application to spherically symmetric system as a testbed

This work: for establishing techniques to exploit heterogeneous 
architectures for supernova simulations



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-4

Implementation
● Numerical setup

– GR Lagrangian hydrodynamics + SN + Implicit scheme

                              S. Yamada, ApJ 475 (1997) 720, A&A 344 (1999) 533

– Ar every step of time evolution, solve a linear equation system
– BiCGStab algorithm for a block tridiagonal matrix

– Rank of each block matrix:
– Weighted Jacobi preconditioner

                                                A. Imakura et al. JSIAM Letter 4 (2012) 41

– This linear equation solver is the first target of offloading 



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-5

Implementation
● Offloading scheme

– Base code: Fortran, MPI parallelized
– C-code as intermediate code (for later convenience)
– Device code is implemented with OpenACC

● Directive-based framework for offloading
● Portable, compatible with OpenMP 4.0

– Multi-GPU: each MPI process handles one GPU device
– Communication via host process

● Two implementations
– “Native” code

● Tuned using OpenACC directives 
● Simple assignement of tasks to threads: each thread compute one row

– cuBLAS code
● Well-tuned BLAS library provided by NVIDIA
● CUDA stream for asynchronous execution (in units of block matrix)



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-6

Machines
● Performance is measured on two machines at KEK

– All arithmetic operations are in double precision
– Compiler: PGI + OpenMPI + CUDA environment

Xeon + Kepler Power8 + Pascal

Host processor Intel Xeon Haswell (6 core) x2 IBM Power8 (10 core) x2

Peak/core (double) 44.8 GFlops/core 22.9 GFlops/core

GPU NVIDIA K40 x2 NVIDIA P100 x4

#core/device (double) 960 1792

Peak/device (double) 1430 GFlops 4700 GFlops

Memory size/device 12 16

Memory B/W 288 GB/s 720 GB/s

bus PCIe Gen2 x16 NVLink (40GB/s x2)



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-7

Problem setup
● Linear equation 

– At each spatial (radial) point r,
● Neutrino dof.: energy, angle, species
● Hydrodynamical dof.: velocty etc. (Nhyd=11)
● Block tridiagonal matrix, each block is dense

     → matrix rank: Nmax = NE*Nang*Nν + Nhyd 

– Nr = 256 → increased to 512, 1024 (preferable)

– Required memory size = Nmax
2 *4*Nr*8 Byte

set-1 set-2 set-3 set-4

Nr 256 256 256 256

NE 14 16 24 32

Nang 6 8 12 16

Nν 4 4 4 4

Nmax 347 523 1163 2059

memory 1 GB 2 GB 9.3 GB 32 GB

Practical choice of Nmax

・  ・  ・・  ・  ・・  ・  ・

r

hydro

neutrino



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-8

Performance result
● MD

-1 : inverse of diagonal blocks (no communication) 

– cuBLAS code tends to be faster at large Nmax region (~x1.5)

– On Pascal, ~140 Gflops/device (3% of peak)



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-9

Performance result
● M – MD  : subdiagonal blocks (with communication)

– Communication overhead is small (~1/Nmax*[Nr/Ndev])



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-10

Acceleration of simulation
● How much is simulation accelerated ?
● Time consuming parts in evolution step

– Dominant: matrix inversion
– Subdominant: neutrino reaction (1/20 of matrix inv.)
– Other parts are (currently) negligible

● GPUs largely accelerate the linear solver
● Now dominant operations are:

– Preparation of matrix (determination of weight parameter)
– Neutrino reaction

→ Next targets of offloading

Result: next page



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-11

Acceleration of simulation
● Speed up

– Elapsed time [sec] is measumred for original and offloaded codes
– Xeon + Kepler: Nrmax=256, Nang=6, Ne=14

– Power8 + Pascal (x4): Nrmax=256, Nang=8, Ne=16

Power/Pascal (Set-2) Np = 16 Np = 4 GPU (cuBLAS)

collision     8.6   35.1

Matrix total 168.0 622.5 45.9

    setup   11.8   43.7 45.0

    Inversion (7 iter) 156.2 578.8   0.9

Xeon/Kepler (Set-1) Np = 8 Np = 1 GPU (cuBLAS)

collision     4.9   40.5

Matrix total 115.5 911.4 46.2

    setup     5.1   40.2 40.8

    Inversion (11 iter) 110.4 871.2   5.4



H. Matsufuru, JPS Annual Meeting, 2018.03.23, Tokyo Univ of Science, Noda, Japan p-12

Conclusion/outlook
● Conclusion

– Acceleration of 1D neutrino-radiation hydrodynamics code by GPUs
– Efficient development by using OpenACC (+cuBLAS)

● cuBLAS becomes more efficient for larger block matrices, while OpenACC 
also works well

– Large speed up for matrix inversion required in implicit scheme
● GPU performance is not well exploited, but already enough fast
● Other parts are to be accelerated urgently
● Simulations with Nr=1024, Nang=12, NE=24 becomes practical

→ Application to systematic 1D simulations
● Outlook

– Application to 2D, 3D code
– Further optimization and improvement of algorithms
– Pezy-SC


	title
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12

