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@ Introduction

Supernova explosion
« Example: 1987A (in large Magellanic Cloud) Crab Nebilie

o g AT e - o o 8

A .K.M ann "Shdow of a Star" (W .H, Free an andCom any, 1997)
Core collapse supernovae
« Half the number of supernovae

e Stars with mass more than 10 times solar mass

At the end of stellar life, nuclear fusion forms iron core and exhosts
light elements

— gravitational collapse — core bounce — explosion
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@ Introduction

Detailed mechanism of core collapse supernova must be
understood

- Formation of neutron starts and blackholes
- Generation of heavy elemenets

- Comparison with observational data (gamma rays, gravitational
waves, energy emission, etc.)

« All the four fundamental forces play essential roles
- Gravitational force (general relativity)
- Properties of dense matter (strong/electromagnetic interactions)
- Neutrino radiation (weak interaction) plays a crucial role

— described by coupled equation of radiation transfer and
hydrodynamics

e Can be understood only through large scale numerical simulations
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@ Introduction

Large scale numerical simulation is essential to understand
explosion mechanism

- Hydrodynamics
- Boltzmann equation for neutrino transport (6-dimensional)
- General relativity
- Equation of state of dense matter, neutrino reactions
* Fully 6D simulations are currently restrictive
- Dimensionality plays an essential role for explosion
- Approximations are often used for 2D/3D systematics
« Spherically symmetric system (1D): target of this work
- Important for comparison with observational data
- Systematic survey of massive stars is necessary
- Basis of 2D/3D simulations
- 1% principle calculation (Full GR + Hydro + Boltzmann)
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@ Introduction

High performance computing
* Two trends of architecture
 Massively parallel supercomputers
- K-computer, Intel Xeon Phi, etc.
» Arithmetic accelerators
- GPUs, Pezy-SC
- Heterogeneous architecture: CPUs + devices
- Currently not widely used in SN simulations in spite of large potential

This work: for establishing techniques to exploit heterogeneous
architectures for supernova simulations

e Application to spherically symmetric system as a testbed
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@ ’ Implementation

 Numerical setup
- GR Lagrangian hydrodynamics + Sy + Implicit scheme
S. Yamada, ApJ 475 (1997) 720, A&A 344 (1999) 533
- At every step of time evolution, solve a linear equation system

- lterative solver algorithm for a block tridiagonal matrix
( By C; 0 \
Ay By Cy 0
0 As; By (s
: : 0
O An—]_ B'n,—l Cn—l
\ 0 .. 0 A, B, )
- Rank of each block matrix: Ny = N, - Nang - Ny + Ny
- Weighted Jacobi preconditioner
A. Imakura et al. JSIAM Letter 4 (2012) 41

- This linear equation solver is the first target of offloading
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@ | Problem setup
* Linear equation

- At each spatial (radial) point r,
» Neutrino dof.: energy, angle, species
« Hydrodynamical dof.: velocty etc. (N, ,4=11)

« Block tridiagonal matrix, each block is dense . w o m
— matrix rank: N, = NN "Ny, + Ny
- N, =256 — increased to 512, 1024 (preferable)
- Required memory size = N,,,,2*4*N,*8 Byte
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set-1 set-2 set-3 set-4 A ;
N, 256 256 256 256 g
Ng 14 16 24 ) 32 §
Nang 6 8 12 16 |
N, 4 4 4 4 # hydro
N, o 347 523 1163 2059
memory 1GB 2 GB L 93GB ) 32 GB

Practical choice of N, .,
p-8



@ | Implementation

« Offloading scheme
- Base code: Fortran, MPI parallelized
- C-code as intermediate code (for later convenience)
- Device code is implemented with OpenACC
» Directive-based framework for offloading
» Portable, compatible with OpenMP 4.0
- Multi-GPU: each MPI process handles one GPU device
- Communication via host processes

 Two implementations

- “Native” code
» Tuned using OpenACC directives
« Simple assignement of tasks to threads
- CUBLAS code
« Well-tuned BLAS library provided by NVIDIA
« CUDA stream for asynchronous execution (in units of block matrix)
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©

Machines

Performance is measured on two machines at KEK
- All arithmetic operations are in double precision
- Compiler: PGl + OpenMPI + CUDA environment

Xeon + Kepler

Power8 + Pascal

Host processor

Intel Xeon Haswell (6 core) x2

IBM Power8 (10 core) x2

Peak/core (double)

44.8 GFlops/core

22.9 GFlops/core

GPU NVIDIA K40 x2 NVIDIA P100 x4
#core/device (double) 960 1792
Peak/device (double) 1430 GFlops 4700 GFlops
Memory size/device 12 16

Memory B/W 288 GB/s 720 GBI/s

bus PCle Gen2 x16 NVLink (40GB/s x2)
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@ - Performance result

« M,’ :inverse of diagonal blocks (no communication)
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- CUBLAS code tends to be faster at large N, region (~x1.5)
- On Pascal, ~140 Gflops/device (3% of peak)
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@ - Performance result

« M- M, : subdiagonal blocks (with communication)
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- Communication overhead is small (~1/N, ., [N/Nge.])

H. Matsufuru, ICCSA 2018, 2-5 July 2018, Monash Univ., Melbourne, Australia

K T I I T | I I | I I ]

- P100 ]

L . =

2 v o]

. :

A O A

- = _

v i

3 O ® native (1 device) _Z

C n O native (4 device) A

A cuBLAS (1 device) ]

- v v cuBLAS (4 device) B

: | 1 1 | | 1 | | 1 | | | | | | 1 | | 1 | | :
0 500 1000 1500 2000

max
p-12



@ Acceleration of simulation

e How much is simulation accelerated ?

e Time consuming parts in evolution step
- Dominant: matrix inversion
- Subdominant: neutrino reaction (1/20 of matrix inv.)

- Other parts are (currently) negligible

Result: next page

 GPUs largely accelerate the linear solver
 Now dominant operations are:
- Preparation of matrix (determination of weight parameter)
- Neutrino reaction (computation collision term: integration)
— Next targets of offloading
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@ Acceleration of simulation

« Speed up

- Elapsed time [sec] for original and offloaded codes

- Xeon + Kepler: Nrmax=256, Nang=6, Ne=14

Xeon/Kepler (Set-1) Np =8 Np =1 GPU (cuBLAS)

collision 4.9 40.5

Matrix total 115.5 911.4 46.2
setup 5.1 40.2 40.8
Inversion (11 iter) 110.4 871.2 54

- Power8 + Pascal (x4): Nrmax=256, Nang=8, Ne=16

Power/Pascal (Set-2) Np = 16 Np =4 GPU (cuBLAS)

collision 8.6 35.1

Matrix total 168.0 622.5 45.9
setup 11.8 43.7 45.0
Inversion (7 iter) 156.2 578.8 0.9
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@ Conclusion/outlook

Conclusion
- Acceleration of 1D neutrino-radiation hydrodynamics code by GPUs

- Efficient development by using OpenACC (+cuBLAS)

» cuBLAS becomes more efficient for larger block matrices, while
OpenACC also works well

- Large speed up for matrix inversion required in implicit scheme
« GPU performance is not well exploited, but already enough fast
» Other parts are to be accelerated urgently
o Simulations with N,=1024, N,,,=12, Ng=24 becomes practical

— Application to systematic 1D simulations
Outlook
- Application to 2D, 3D code
- Further optimization and improvement of algorithms
- Pezy-SC: translation to OpenCL code is needed
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