Lattice QCD simulation with exact chiral symmetry

松古 栄夫 (Hideo Matsufuru) for JLQCD Collaboration

High Energy Accelerator Research Organization (KEK)

Email: hideo.matsufuru@kek.jp WWW: http://suchix.kek.jp/~matufuru/

15 May 2009, Seminar at RIKEN

Contents

- Introduction
- Lattice fermion actions
- Overlap fermion
- Implementation of overlap simulation
 - Solver algorithm
 - HMC algorithm
- JLQCD's overlap project
- Physics results
 - Epsilon regime
 - Topological susceptibility
 - Meson spectrum and ChPT test
- Summary/outlook

Introduction

Lattice QCD: gauge theory on 4D Euclidean lattice

- Regularized by lattice
 - gluon: SU(3) link variables
 - quark: Grassmann field on sites
- Continuum limit $(a \rightarrow 0) \rightarrow QCD$
- Numerical simulation by Monte Carlo
- Nonperturbative calculation
- Quantitative calculation has become possible
 - Matrix elements for flavor physics
 - Phase structure/plasma properties
 - Nuclear force in near future

Introduction

Our goals:

- Quantitative QCD calculation
 - To the level required by flavor physics
- Explore chiral dynamics
 - Mechanism of chiral symmetry breaking
- Three extrapolations must be under control:
- Continuum limit ($a \rightarrow 0$)
- Thermodynamic limit (infinite $V \rightarrow \infty$)
- Chiral limit (m \rightarrow 0)

In particular, taming chiral symmetry is most significant

Recent progress:

- Breakthrough: domain-wall fermion
- Realization of exact chiral symmetry on the lattice
 - Ginsparg-Wilson relation
- Fermion actions satisfying G-W relation

Our choice: overlap fermion --- Why overlap ?

- Exact chiral symmetry (theoretically clean)
 - No unwanted operator mixing
 - Continuum ChPT is applicable
 - Direct access to symmetry breaking properties
 - Epsilon regime, etc
- Large simulation costs (numerically challenging!)
 - Let's get rid of by algorithmic progress and large machine
- First large-scale dynamical simulation

Members

KEK: T. Aoyama, S. Hashimoto, T. Kaneko, H. Matsufuru, J. Noaki, N. Yamada, H. Ikeda

Tsukuba: S. Aoki, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. Taniguchi, A. Ukawa, T. Yoshie, T. Yamazaki, K. Takeda

Nagoya: H. Fukaya

Kyoto: T. Onogi, E. Shintani, H. Ohki

Hiroshima: K.-I. Ishikawa, M. Okawa

Taipei (TWQCD): T.W. Chiu, T.H. Hsieh, K. Ogawa

Machines

Main machine: IBM Blue Gene/L at KEK(2006~)

- 57.6 Tflops peak (10 racks)
- 0.5TB memory/rack
- 8x8x8(16) torus network
- About 30% performance for Wilson kernel (thanks to IBM staffs)
- 10-15% for overlap HMC
- Hitachi SR11000 (KEK)
 - 2.15TFlops/0.5TB memory
- NEC SX8 (YITP, Kyoto)
 - 0.77TFlops/0.77TB memory

Lattice fermion actions

Fermion doubling

naïve discretization causes 16-fold doubling

$$S_F = \sum_{x} \bar{\psi}(x) \left[\frac{1}{2} \sum_{\mu} [U_{\mu}(x)\psi(x) - U_{\mu}(x-\hat{\mu})\psi(x-\hat{\mu})] + m\psi(x) \right]$$

 $a = 1, U_{\mu} \simeq 1 + igA_{\mu}, \hat{\mu}$: unit vector in μ -th direction

$$S_q(p)_{free} = \frac{1}{\sum_{\mu} \gamma_{\mu} \sin(p_{\mu}a) + ma}$$

- Nielsen-Ninomiya's No-go theorem
 - Doublers appear unless <u>chiral symmetry</u> is broken

$$D\gamma_5 + \gamma_5 D = 0$$

- Wilson fermion
 - adds Wilson term to kill 15 doublers
 - breaks chiral symmetry explicitly → additive mass renorm.
 - Improved versions, twisted mass versions are widely used $S_F = \frac{1}{2} \sum \bar{\psi}(x) \left[\gamma_{\mu} U_{\mu}(x) \psi(x + \hat{\mu}) - \gamma_{\mu} U_{\mu}(x - \hat{\mu}) \psi(x - \hat{\mu}) - \frac{r}{2} \Delta^{(2)} \psi(x) \right]$
- Staggered fermion
 - 16=4 spinors x 4 flavors ('tastes')
 - Remnant U(1) symmetry
 - Fourth root trick: still debated
 - Numerical cost is low

- Domain-wall fermion (Kaplan 1992, Shamir 1993)
 - 5D formulation, light modes appear at the edges
 - Symmetry breaking effect $m_{res} \rightarrow 0$ as $N_5 \rightarrow \infty$

$$S_F = \frac{1}{2} \sum_{x,s} \bar{\psi}(x,s) \left[D_W(x,s; -M_0)\psi(x,s) + (1+\gamma_5)\psi(x,s+1) + (1-\gamma_5)\psi(x,s-1) - 2\psi(x,s) \right]$$

- Costs O(20) times than Wilson fermions

Ginsparg-Wilson relation (1982)

 $\gamma_5 D + D\gamma_5 = aRD\gamma_5 D$

- Exact chiral symmetry on the lattice (Luscher 1998)

$$\delta\psi = \gamma_5 \left(1 - \frac{aR}{2}D\right)\psi \qquad \delta\bar{\psi} = \bar{\psi} \left(1 - D\frac{aR}{2}\right)\gamma_5$$

- Satisfied by
 - Overlap fermion (Neuberger, 1998)
 - Fixed point action (Bietenholz and Wiese, 1996)

$$D = \frac{1}{Ra} \left[1 + \gamma_5 \operatorname{sign}(H_W(-m_0)) \right]$$

 H_W : hermitian Wilson-Dirac operator (Neuberger, 1998)

• Theoretically elegant

-1

- Satisfies Ginsparg-Wilson relation
- Infinite N_s limit of Domain-wall fermion (No $\ m_{res}$)
- Numerical cost is high
 - Calculation of sign function
 - Discontinuity at zero eigenvalue of H_W
- Has become feasible with
 - Improvement of algorithms
 - Large computational resources

Large-scale dynamical simulation projects

Fermion	Chiral symmetry	flavor structure	cost	Collab.
Wilson-type	explicitly broken	simple	modest	PACS-CS, etc
Twisted mass	explicitly broken	simple	modest	ETM
Staggered	remnant U(1)	complex	low	MILC, etc
Domain-wall	good	simple	high	RBC, UKQCD
Overlap	best	simple	very high	JLQCD

Overlap fermion

Overlap fermion

$$D(m) = \left(M_0 + \frac{m}{2}\right) + \left(M_0 - \frac{m}{2}\right)\gamma_5 \operatorname{sign}(H_W)$$

 H_W : hermitian Wilson-Dirac operator

• Sign function means:

$$\operatorname{sign} H_W \cdot v = \sum_{\lambda} \operatorname{sign}(\lambda)(\psi_{\lambda}, v)\psi_{\lambda}$$

 $(\lambda, \psi_{\lambda}):$ eigenvalue/vector of H_W

In practice, all eigenmodes cannot be determined

- Reasonable solution:
 - Eigenmodes determined at low frequency part
 - Approximation formula for high mode part
 - Chebychev polynomial, partially fractional, etc.

Zolotarev's Rational approximation

$$\operatorname{sign}(H_W) = \frac{H_W}{\sqrt{H_W^2}} = H_W \left(p_0 + \sum_{l=1}^N \frac{p_l}{H_W^2 + q_l} \right)$$

- $(H_W^2 + q_l)^{-1}$: calculable simultaneously
- Valid for $|\lambda|$ (eigenmode of H_W) \in [λ_{thrs} , λ_{max}]
- Projecting out low-modes of H_W below $\lambda_{thrs} \rightarrow \operatorname{sign}(\lambda) \ (\lambda < \lambda_{thrs})$
- Cost depends on the low-mode density

(λ_{thrs} =0.045, N=10 in this work)

Overlap operator is discontinuous at $\lambda = 0$

- --- Needs care in HMC when λ changes sign, thus changing topological charge Q
- Reflection/refraction
 - (Fodor, Katz and Szabo , 2004)
 - Change momentum at $\lambda{=}0$
 - Additional inversions at $\lambda = 0$
- Topology fixing term (Vranas, 2000, Fukaya, 2006)
 - $\lambda \sim 0$ modes never appear
- Tunneling HMC

(Golterman and Shamir, 2007)

- Project out low modes in MD steps
- Needs practical feasibility test

Suppressing near-zero modes of H_W

<u>Topology fixing term</u>: extra Wilson fermion/ghost (Vranas, 2000, Fukaya, 2006, JLQCD, 2006)

$$\det\left(\frac{H_W^2}{H_W^2 + \mu^2}\right) = \int \mathcal{D}\chi^{\dagger} \mathcal{D}\chi \exp[-S_E]$$

--- avoids $\lambda{\sim}0$ during MD evolution

- No need of reflection/refraction
- cheeper sign function

Suppressing near-zero modes of H_W

HMC/MD history of lowest eigenvalue

 N_f = 2, a~0.125fm, m_{sea} ~ m_s , μ =0.2

With extra Wilson fermion/ghost, $\lambda=0$ does not occur

Locality

Fermion operator should be local

- Overlap operator is exponentially local, if
 - No low mode of H_W below some threshold

Hernandez, Jansen, Luscher, 1999

Near-zero mode is itself exponentially local

Golterman, Shamir, 2003; Golterman, Shamir, Svetitsky, 2003

Locality

JLQCD, 2008; JLQCD (Yamada et al.), Proc. of Lattice 2006

• At beta=2.3 (Nf=2)

Forbidding near-zero mode of $H_W \Leftrightarrow$ fixing topology Is fixing topology a problem ?

- In the infinite V limit,
 - Fixing topology is irrelevant
 - Local fluctuation of topology is active
- In practice, V is finite
 - Topology fixing \Rightarrow finite V effect
 - θ =0 physics can be reconstructed
 - Finite size correction to fixed Q result (with help of ChPT)
 - Must check local topological fluctuation
 - \Rightarrow topological susceptibility, η' mass
 - Remaining question: Ergodicity ?

One can reconstruct fixed θ physics from fixed Q physics (Bowler et al., 2003, Aoki, Fukaya, Hashimoto, & Onogi, 2007)

Partition function at fixed topology

$$Z_Q = \frac{1}{2\pi} \int_{-\pi}^{\pi} Z(\theta) \exp(i\theta Q) \quad \Rightarrow \quad Z(\theta) = \sum_Q Z_Q \exp(-i\theta Q)$$

- For $Q \ll \chi_t V_{\cdot} Q$ distribution is Gaussian
- Physical observables
 - Saddle point analysis

 $\Rightarrow \langle O \rangle_{\theta} = \langle O \rangle_Q + (\text{finite } V \text{ correction}) \quad \text{for} \quad Q \ll \chi_t V$

- Example: pion mass

$$m_{\pi}^{Q} = m_{\pi}(\theta = 0) + \frac{1}{2V\chi_{t}} \left(1 - \frac{Q^{2}}{V\chi_{t}}\right) \frac{\partial^{2}m_{\pi}(\theta)}{\partial\theta^{2}}\Big|_{\theta = 0} + O(V^{-2})$$

Implementation of overlap simulation

- Solver algorithm for overlap operator
- Hybrid Monte Carlo algorithm

Solver algorithm for overlap operator

 $D_{ov} x = b$ must be solved

- Most time-consuming part of HMC
- Needed to obtain quark propagator
- Two algorithms were used
 - Nested (4D) CG
 - 5D CG

4D solver

- Nested CG (Fromer et al., 1995, Cundy et al., 2004)
 - Outer CG for D(m), inner CG for $(H_W^2 + q_l)^{-1}$ (multishift)
 - Relaxed CG: ϵ_{in} is relaxed as outer loop iteration proceeds
 - Cost mildly depends on N

Borici, 2004, Edwards et al., 2006

- Schur decomposition
 - One can solve $S\psi_4 = \chi_4$ by solving (example: N=2 case)

$$M_{5}\begin{pmatrix} \phi \\ \psi_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ \chi_{4} \end{pmatrix}, \quad M_{5} = \begin{pmatrix} H_{W} & -\sqrt{q_{2}} & & & 0 \\ -\sqrt{q_{2}} & -H_{W} & & & \sqrt{p_{2}} \\ & & H_{W} & -\sqrt{q_{1}} & 0 \\ & & -\sqrt{q_{1}} & -H_{W} & \sqrt{p_{1}} \\ \hline 0 & \sqrt{p_{2}} & 0 & \sqrt{p_{1}} & R\gamma_{5} + p_{0}H \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

 $S = D - CA^{-1}B$: overlap operator (rational approx.)

- Even-odd preconditioning
- Low-mode projection of H_W in lower-right corner

5D solver

Schur decomposition:

$$M_5 = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ CA^{-1} & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} 1 & A^{-1}B \\ 0 & 1 \end{pmatrix} \equiv \tilde{L}\tilde{D}\tilde{U},$$

where $S = D - CA^{-1}B$. S is called the Schur complement. Consider a linear equation

$$M_5\left(\begin{array}{c}\phi\\\psi_4\end{array}\right) = \left(\begin{array}{c}0\\\chi_4\end{array}\right)$$

Using $M_5 = \tilde{L}\tilde{D}\tilde{U}$ and multiplying \tilde{L}^{-1} from the left to the above equation,

$$\left(\begin{array}{cc}A&0\\0&S\end{array}\right)\left(\begin{array}{cc}\phi+A^{-1}B\psi_4\\\psi_4\end{array}\right)=\left(\begin{array}{cc}0\\\chi_4\end{array}\right).$$

Namely, by solving 5-dimensional equation (4.3), one can solve $S\psi_4 = \chi_4$.

(This page is added after seminar for explanation.)

5D solver

In general, A B, and C has the following structure.

$$A = \begin{pmatrix} A_N \\ A_{N-1} \\ & \ddots \end{pmatrix}, \quad B = \begin{pmatrix} B_N \\ B_{N-1} \\ \vdots \end{pmatrix}, \quad C = (C_N, C_{N-1}, \cdots)$$
$$A^{-1} = \begin{pmatrix} A_N^{-1} \\ & A_{N-1}^{-1} \\ & \ddots \end{pmatrix}$$
$$A_i^{-1} = \frac{1}{H_W^2 + q_i} \begin{pmatrix} H_W & -\sqrt{q_i} \\ -\sqrt{q_i} & -H_W \end{pmatrix} \quad (i = 1, \dots, n)$$

Then

$$S = D - CA^{-1}B = D - \sum_{i} C_{i}A_{i}^{-1}B_{i}$$
$$= R\gamma_{5} + p_{0}H_{W} + H_{W}\sum_{i=1}^{N} \frac{p_{i}}{H_{W}^{2} + q_{i}}.$$

Even-odd preconditioning

- Acceleration by solving $(1 M_{ee}^{-1}M_{eo}M_{oo}^{-1}M_{oe})x_e = b'$
 - Need fast inversion of the "ee" and "oo" block; easy if there is no projection operator
 - $M_{ee(oo)}$ -1 mixes in the 5th direction, while $M_{eo(oe)}$ is confined in the 4D blocks
- Low-mode projection
 - Lower-right corner must be replaced by

$$R(1 - P_H)\gamma_5(1 - P_H) + p_0H_W + \left(m_0 + \frac{m}{2}\right)\sum_{j=1}^{N_{ev}}\operatorname{sign}(\lambda_j)v_j \otimes v_j^{\dagger}$$
$$P_H = 1 - \sum_{j=1}^{N_{ev}}v_j \otimes v_j^{\dagger}$$

- Inversion of $M_{ee(oo)}$ becomes non-trivial, but can be calculated

$$\{x_e, \gamma_5 x_e, v_{je}, \gamma_5 v_{je} (j = 1, ..., N_{ev})\}\$$

• Comparison on 16³x48 lattice

- 5D solver is 3-4 times faster than 4D solver

Comparison with Domain-wall

• Overlap 5DCG (N=2 case)

$$M_{5} = \begin{pmatrix} H_{W} & -\sqrt{q_{2}} & & & 0 \\ -\sqrt{q_{2}} & -H_{W} & & & \sqrt{p_{2}} \\ & & H_{W} & -\sqrt{q_{1}} & 0 \\ & & -\sqrt{q_{1}} & -H_{W} & \sqrt{p_{1}} \\ \hline 0 & \sqrt{p_{2}} & 0 & \sqrt{p_{1}} & R\gamma_{5} + p_{0}H \end{pmatrix}$$

• Domain-wall (N_s =4 case) $D_{DW} = \begin{pmatrix} D_W & -P_L & mP_R \\ -P_R & D_W & -P_L \\ & -P_R & D_W & -P_L \\ mP_L & -P_R & D_W \end{pmatrix}$

Cf. Optimal domain-wall fermion (T.-W. Chiu, 2003) CG iteration/ $#D_W$ -mult for D^{-1}

At $m=m_s/2$, $a^{-1}=1.7$ GeV, 16³x32/48, up to residual 10⁻¹⁰:

- Overlap(N=10): O(1200) / O(50,000) ($m_{res} = 0 \text{ MeV}$)
- DW(Ns=12): O(800) / O(20,000) (m_{res} =2.3 MeV)

(Y.Aoki et al., Phys.Rev.D72,2005)

• Factor ~2.5 difference

- Standard algorithm for dynamical simulation
 - Introduce momenta conjugate to link var. U
 - Fermion determinant: pseudo-fermion \rightarrow external field

$$\det(D^{\dagger}D) = \int \mathcal{D}\phi^{\dagger}\mathcal{D}\phi \exp[-\phi(D^{\dagger}D)^{-1}\phi]$$

- Hamiltonian governing ficticious time variable

$$\mathcal{H} = \frac{1}{2} \sum_{x,\mu} \operatorname{tr} H^2_{\mu}(x) + S_G[U] + S_{PF}[U,\phi^{\dagger},\phi]$$

- Molecular dynamics evolution: Hamilton eq.

$$\frac{d}{d\tau}U_{\mu}(x;\tau) = H_{\mu}(x;\tau) \qquad \frac{d}{d\tau}H_{\mu}(x;\tau) = -\frac{\partial}{\partial U_{\mu}}(S_G + S_{PF})$$

Leapfrog integrator (symplectic)

- Initial momenta: given by Gaussian distribution
- Fermion field: treated as external field

$$P[\phi] \propto \exp\left[-\phi^{\dagger} (D^{\dagger}D)^{-1}\phi\right]$$

 $\leftarrow P[\xi] \propto \exp\left[-\xi^{\dagger}\xi\right], \quad \phi = D^{\dagger}\xi$

- ϕ is kept const. During evolution of U and H
- Metropolis test at the end of evolution
 - Eliminate finite step size error \Rightarrow detailed balance
 - Accept new configuration with probability

 $P_{acc} = \min\{1, \exp(-\mathcal{H}[U_{new}] + \mathcal{H}[U_{new}])\}$

Hybrid Monte Carlo algorithm

- As update algorithm, straightfoward for overlap fermions
 - Except for singularity at $\lambda = 0$ (absent in our case)
 - If topology is not fixed, reflection/refraction prescription must be employed --- additional overlap inversion
 - Monitoring low-lying eigenmodes of H_W
 - Implicitly restarted Lanczos algorithm
- Nf=2 simulation
 - 5D solver without projection of low-modes of H_W
 - Noisy Metropolis (Kennedy and Kuti, 1985) --> correct error from low modes of H_W
 - At early stage, 4D solver w/o noisy Metropolis (twice slower)
- Nf=2+1 simulation
 - 5D solver with low-mode projection (w/o noisy Metropolis)

Odd number of flavors

Bode et al., 1999, DeGrand and Schaefer, 2006

- $H^2 = D^{\dagger}(m)D(m)$ commutes with γ_5
 - Decomposition to chiral sectors is possible

 $H^2 = P_+ H^2 P_+ + P_- H^2 P_- \Rightarrow \det H^2 = \det(P_+ H^2 P_+) \cdot \det(P_- H^2 P_-)$

- $P_+H^2P_+$ and $P_-H^2P_-$ share eigenvalues except for zero-modes
- 1-flavor: one chirality sector
- Zero-mode contribution is constant throughout MC, thus neglected
- Pseudo-fermion: $S_{PF} = \sum_{x} \phi_{\sigma}^{\dagger}(x) Q_{\sigma}^{-1} \phi_{\sigma}(x), \quad Q_{\sigma} = P_{\sigma} H^{2} P_{\sigma}$ σ is either + or - x
 - Refreshing ϕ from Gaussian distributed ξ as $\phi_{\sigma}(x) = Q_{\sigma}^{1/2}\xi(x)$
 - sqrt is performed using a rational approximation
 - Other parts are straightforward

• Mass preconditioning (Hasenbusch, 2001)

$$S_{ov}^{(1)} = \phi_1^{\dagger} [D(m')^{\dagger} D(m')]^{-1} \phi_1,$$

$$S_{ov}^{(2)} = \phi_2^{\dagger} \left\{ D(m') [D(m)^{\dagger} D(m)]^{-1} D(m')^{\dagger} \right\} \phi_2,$$

• Multi-time step (Sexton-Weingarten, 1992)

different time steps for overlap, preconditioner, gauge/exWg

Omelyan integrator

Omelyan et al., 2002; 2003, Takaishi and de Forcrand, 2006

- Standard leapfrog:

 $e^{\Delta \tau (T+V)} = e^{(1/2)\Delta \tau T} e^{\Delta \tau V} e^{(1/2)\Delta \tau T} + O(\Delta \tau^3)$

- Integrator proposed by Omelyan et al., 2002; 2003

 $e^{\Delta \tau (T+V)} = e^{\lambda \Delta \tau T} e^{(1/2)\Delta \tau V} e^{(1-2\lambda)\Delta \tau T} e^{(1/2)\Delta \tau V} e^{\lambda \Delta \tau T} + O(\Delta \tau^3)$

- Discretization error is minimized at $\lambda_c \simeq 0.1932$
- About 1.5 times accelration (test at Nc=2)

- Improved solver algorithm
 - Better solver algorithm ?
 - Multi-grid or domain decomposition ?
 - Adoptive 5D CG solver (change N as solver proceeds)
- Acceleration of HMC
 - Chronological estimator
- Better algorithm to monitor low-lying eigenmodes of H_W

JLQCD's overlap project

Runs

S.Hashimoto, PoS(LAT2008) H.Matsufuru for JLQCD-TWQCD, PoS(LAT2007)

- Iwasaki gauge (rectangular, RG improved)
- Topology fixing term (with twisted mass ghost: μ =0.2)
- Overlap fermion with $m_0 = 1.6$

<u>Nf=2: 16³x32, a=0.12fm</u> (production run finished)

- 6 quark masses covering (1/6~1) m_s
- 10,000 trajectories with length 0.5
- 20-60 min/traj on BG/L 1024 nodes
- Q=0, Q=-2, -4 ($m_{sea} \sim m_s/2$)
- ϵ -regime ($m_{sea} \sim 3$ MeV)

Runs

<u>Nf=2+1 : 16^3x48 , a=0.11fm</u> (production run finished)

- 2 strange quark masses around physical m_s (=0.080, 0.100)
- 5 ud quark masses covering $(1/6 \sim 1)m_s$
- 2500 trajectories with length 1
- About 2 hours/traj on BG/L 1024 nodes
- Q=1 (m_{ud} =0.015, m_s =0.080)
- <u>Nf=2+1 : 24³x48</u> (in progress)
 - Same parameters as 16³x48
 - m_{ud} =0.015, 0.025, m_s =0.080

Lattice scale

- Scale: set by $r_0 = 0.49 \text{fm}$
 - Static quark potential

$$\left. r^2 \frac{\partial V(r)}{\partial r} \right|_{r=r_0} = 1.65$$

Milder β-shift than
 Wilson-type fermion

Physics results

- Epsilon regime
- Topological susceptibility
- Meson spectrum and ChPT test

- Banks-Casher relation (Banks & Casher, 1980) $\Sigma = \langle \bar{q}q \rangle = \lim_{m \to 0} \lim_{V \to \infty} \frac{\pi \rho(0)}{V}$ $\rho(\lambda) = \sum_k \langle \delta(\lambda - \lambda_k) \rangle : \text{spectral density of } D$
 - Accumulation of low modes <=> Chiral SSB

$$V \to \infty$$
, then $m \to 0$

• ϵ -regime: $m \ll 1/\Sigma V$ at finite V

 $1/\Lambda_{QCD} \ll L \ll 1/m_{\pi}$

- Low-energy effective theory
- Q-dependence is manifest
- Random Matrix Theory (RMT)

ε-regime

(JLQCD, 2007, JLQCD and TWQCD, 2007)

• Low-lying mode distribution

- Matching with ChRMT
 - $\Sigma = [251(7)(11) \text{ MeV}]^3$ (distributions)
 - $\Sigma = [240(4)(7) \text{ MeV}]^3$ (correlators)
- Extension to *p*-regime is in progress

Damgaard and Fukaya (2009)

- Nf=2+1
- Reanalyzing Nf=2 data

JLQCD-TWQCD, PLB665(2008)294; PoS(Lattice2008)072

- Is local topological fluctuation sufficient ?
- In the infinite V limit,
 - Fixing topology is irrelevant
 - Local fluctuation of topology is responsible to physics
- In practice V is finite
 - Topology fixing \Rightarrow finite V effect
 - θ =0 physics can be reconstructed
 - Must check local topological fluctuation

 \Rightarrow topological susceptibility, η' mass

Topological susceptibility

- Topological susceptibility $\chi_t\,$ can be extracted from correlation functions (Aoki et al., 2007)

- Fit with NLO ChPT prediction
 - $\Sigma = [245(5)(10) \text{ MeV}]^3 \text{ (Nf}=2)$
 - $\Sigma = [240(5)(2) \text{ MeV}]^3$ (Nf=2+1, $m_s = 0.100$)
- Good agreement with other approaches

(epsilon regime, meson spectrum)

- Local fluctuation is enough active
- Volume is sufficiently large

(The quoted value of Σ for Nf=2+1 was replaced with correct value after seminar.)

"Touchstone" for quantitative measurements

- Controlled chiral extrapolation ?
- Is finite volume effects under cotrol ?
 - Fixed topology effect as well as ordinary one
- Is consistent with chiral perturbation theory ?
 - Virtue of overlap: continuum formulae are applicable
 - Extraction of low energy constants
 - Which expansion parameter is efficient ?
- How large is strange quark effect ?

Nf=2: JLQCD-TWQCD (Noaki et al.), PRL 101 (2008)202004 Nf=2+1: JLQCD-TWQCD (Noaki et al.), arXiv:0810.1360

Improvements with low-lying modes

Giusti et al., 2003; DeGrand & Schaefer, 2004

- Improvement of signal
- Accelerating solver (8 times faster)
- Nonperturbative renormalization (RI-MOM scheme) Martinelli et al., 1995

Finite volume correction

• *R*: ordinary finite size effect (Luscher's formula)

Estimated using two-loop ChPT (Colangelo et al, 2005)

- *T*: <u>Fixed topology effect</u> (Aoki et al, 2007)
- At most 5% effect --- largely cancel between R and T

 $Nf=2, m_{sea} = 0.050 \quad Q = 0, -2, -4$

- No large Q-dependence (consistent with expectation)

Nf=2 NLO ChPT

Region of convergence

• NLO formulae:

$$\frac{m_{\pi}^2}{m_q} = 2B[1 + x\ln(x) + c_3x + O(x^2)]$$

$$f_{\pi} = f[1 - 2x\ln(x) + c_4x + O(x^2)]$$

• Expand either with

$$x \equiv \frac{m^2}{(4\pi f)^2}, \ \hat{x} \equiv \frac{m_\pi^2}{(4\pi f)^2}, \ \xi \equiv \frac{m_\pi^2}{(4\pi f_\pi)^2}$$

- At NLO, not converged beyond $m_{\pi} \sim 450 \text{ MeV}$
- ξ Expands the region significantly (resummation from f_{π})

• NNLO: 2-loop effects and analytic terms (full NNLO)

Colangelo et al., 2001

- Input: $7l_1^r + 8l_2^r$, ambiguity took into account
- Simultaneous correlated fit: 6x2=12 data points, 6 parameters

NNLO converges well and gives consistent values of f and Σ with other approaches.

Low energy constants

--- NNLO fit with ξ

For reliable extraction of low energy constant, NNLO terms are mandatory (For NLO even fit is possible, result is not reliable)

- How to treat K mesons ($m\kappa^2$, $f\kappa$) ?
 - Apply NNLO (SU(3) ChPT, natural extension)
 - Apply NLO within mud << ms

Integrate out strange quark a \rightarrow reduced SU(2) ChPT Gasser *et al.*, 2007; RBC+UKQCD, 2008; PACS-CS, 2008

- Our meson spectroscopy at 2+1 flavors:
 - 2 values of *m*_s
 - 5 ud masses for each m_s : 310 MeV < m π < 800 MeV
 - L=1.8 fm, 1/a=1.83GeV, 16³x48 lattice
 - 80 conjugate pairs of eigenmodes
 - Nonperturbative renormalization
 - Finite volume effects (Luscher's formula/fixed topology)

Nf = 2 + 1, NNLO SU(3) ChPT

- 2-loop + analytic terms Amoros et al., 2000
 - input: $L^{r_1}, L^{r_2}, L^{r_3}, L^{r_7}$ -- uncertainty gives small syst. errors
 - $4 \times 10 4 = 36$ data points, 16 parameters
 - Expansion in $\xi_{\pi} = (m_{\pi}/(4\pi f_{\pi}))^2$, $\xi_{\kappa} = (m_{\kappa}/(4\pi f_{\pi}))^2$
 - Correlated simultaneous fit: $\chi^2/dof = 1.58$

Ambiguity in SU(3) limit

• By putting $m_{ud}=m_s$

- Lowest order low energy constants B₀, f₀ are not determined (Lack of data for strange mass dependence)
- Can be solved only by other simulations at degenerate masses

2+1 fit results

• Preliminary results

fo = 109(28) MeV $\Sigma_0 = [213.5(6.9) \text{ MeV}]^3$ $L^r_4 (m_\rho) = -1.09(19) \times 10^{-3}$ $L^r_5 (m_\rho) = -9.00(97) \times 10^{-4}$ $L^r_6 (m_\rho) = -3.64(75) \times 10^{-4}$ $L^r_8 (m_\rho) = 6.23(92) \times 10^{-4}$ $m_{ud}(2GeV) = 4.05(27) \text{ MeV}$ $m_s(2GeV) = 109.8(2.4) \text{ MeV}$ $f_{\pi} = 124.8(2.8) \text{ MeV}$ $f_{\kappa} = 156.0(2.7) \text{ MeV}$ $f_{\kappa}/f_{\pi} = 1.249(17)$

- Only way to determine LEC in SU(3) ChPT
- So far no other lattice calculation including NNLO
- Reduced SU(2) ChPT
 - Reduced SU(2) \Rightarrow LECs in SU(2) ChPT
 - Roughly consistent with previous analysis in Nf=2
- 24³×48 lattice will confirm finite size effect

Other results

Cf. http://jlqcd.kek.jp/

- Nonperturbative renormalization
- Kaon bag parameter B_K
- Vacuum polarization function
 - π^+ - π^0 mass difference
 - Strong coupling const
 - S-parameter
- Nucleon structure
 - Nucleon sigma term
 - S-quark content (y-parameter)
- Pion form factors

- Overlap fermion has elegant chiral structure
- Numerical cost is high, but can be simulated
- JLQCD is performing large dynamical overlap project at Nf=2 and 2+1
- Rich physics results are being produced

Outlook

- Run on larger lattice (L=24) in progress
- Simulation at finite temperature is challenging
- Beyond QCD simulations are interesting

Lattice QCD at T>0 (μ >0)

 ∞

m^{tric}

phy

m.

m,

0

 $N_f = 2$

2nd order

 $N_f = 2+1$

(DeTar, Lattice 2008)

2nd order

Z(2)

 m_u, m_d

 $N_f = 3$

Z(2)

2nd order

O(4) ?

phys. point

Now popular phase diagram, but;

- How reliable?
- Consistency check enough?

Nf=2

- KS fermion does not exhibit expected O(4) scaling
- Wilson quark shows O(4), but at rather heavy masses
- Most recent works are by KS, Nt=4.

- Really crossover ? [(old) Wilson result is of 1st order]
- Recently only with KS fermions, still large uncertainty

Pure

Gauge

 $N_f = 1$

 ∞

Beyond QCD

Motivation:

- Technicolor ?
- Phase structure of (lattice) gauge theories
- Advantages of exact chiral symmetry

Beyond QCD applications

- Large Nf
- Non-fundamental representations (adjoint, etc.)
- Nc not 3
- Are confinement and broken chiral symmetry occur simultaneously ?

Machine prospect

- Lattice QCD has been an application which requires most large computational resources
- Growth of computational power → new era of lattice simulations
- Around 2010, ~10PFlops expected
 - Next generation supercomputer project (10TFlops in 2011?)
 - Two projects in USA
- Other architecture
 - GPGPU (NVIDIA, etc)
 - CELL
 - Other arithmetic accelerators
 - Needs better algorithms

