Nc=2 格子ゲージ理論のWilson-Dirac演算子 に関する相構造

Yoshio Kikukawa (Univ. Tokyo) <u>Hideo Matsufuru</u> and Norikazu Yamada (KEK)

hideo.matsufuru@kek.jp http://suchix.kek.jp/~matufuru/

1

High Energy Accelerator Research Organization (KEK)

10-13 September 2009, JPS meeting, Konan Univ., Kobe

Study of phase structure of SU(N) gauge theories

- Fundamental and adjoint representations
- Search for conformal window: possible alternative to Standard Model Higgs sector
- At zero and finite temperature
- SU(2) theory:
 - Conformal behavior expectesd with less #flavor
- Overlap fermion
 - Exact chiral symmetry

$$D = \frac{1}{Ra} \left[1 + \gamma_5 \operatorname{sign}(H_W(-m_0)) \right]$$

- Epsilon regime to explore chiral symmetry breaking
- For locality of overlap operator
 - Wilson-Dirac kernel must have gap (mobility edge)
 ⇔ Out of Aoki phase (Golterman and Shamir, 2003)
 Motivation of present work

Flavor-parity broken phase of Wilson-Dirac operator

- Proposed by Aoki, 1984
- Numerical evidence
- Chiral Lagrangian analysis
 (Sharpe and Singleton, 1998)
- As the kernel of overlap operator, to be in between fingers

Conjecture of Golterman-Shamir (2003)

- Eigenmodes of H_W is local below "mobility edge"
- Aoki phase is characterized by vanishing mobility edge
- Locality of overlap operator is ensured if H_W is out of Aoki phase

Aoki phase: parity-flavor breaking

- Pion correlator
 - Introduce twisted mass term in the Wilson-Dirac operator (external field)
 - Pion correlator in broken directions
 - Pion mass is extrapolated to vanishing twisted mass: massless in Aoki phase
- Eigenmodes of hermitian Wilson-Dirac operator H_W
 - Spectral density: if it has gap, no possibility of Aoki phase
 - Locality of eigenvectors of H_W : nonlocal in Aoki phase

Spectrum of overlap operator

- To explore the chiral symmetry breaking
- Comparison with random matrix theory

Lattice setup

Present study: quenched SU(2) with Iwasaki gauge action

- Hermitian Wilson-Dirac operator
- Fundamental and adjoint fermions
- Lattice: 8³x16 (12³x24 in progress)
- Scale: r₀=0.49fm (just a guide!)
- Mainly at $\beta = 0.80, 1.00$
- Simulation: on KEK Blue Gene
- All results are preliminary

In progress:

- With topology fixing term (extra Wilson fermion/ghost)
- Dynamical overlap fermions (fundamental, adjoint)

Pion correlator:

$$\Gamma(x,y) = \langle \pi_+(x)\pi_-(y) \rangle \qquad \pi_\pm(x) = i\bar{\psi}(x)\gamma_5\tau_\pm\psi(x)$$

from propagators with twisted mass

$$S_q = [D_W - im_1\tau_3\gamma_5]^{-1}$$

Meson mass extracted from exponential fit

Meson correlator (fundamental)

Linearly extrapolated to $m_1=0$ with smallest 3 points

- Vanishing pion mass = Aoki phase
 Result:
 - Data at β =0.80 and 1.0 indicate existence of Aoki phase
 - Width of Aoki phase decreased as β increases
 - More careful analysis of extrapolation in m_1 is necessary

• Same analysis as fundamental fermion

Results:

- At β =0.80, Aoki phase extends to large M₀ values
- Critical values of M_0 are different from fundamental case

Low-lying eigenvalue density of H_W

- If gap is open, no chance of Aoki phase
- With vanishing gap, Aoki phase appear if near-zero modes are extended (mobility edge is zero)

Content of the second state of the second s

Density of the lowest eigenvector $\Phi(x) = \sum_{a,j} |\phi_{\lambda}^{a,j}(x)|^2$

- Exponentially local out of Aoki phase
- Extended in Aoki phase

Numerical results:

- Present results are not manifest, need refined analysis
- Same analysis is in progress for adjoint fermion

Spectrum of overlap operator

Unfolded low-lying eigenvalues of overlap operator

- Comparison with Chiral Random Matrix Theory
 - Orthogonal (SU(2) fundamental)
 - Unitary (SU(N), N>2)
 - Symplectic (adjoint)
- To judge whether the chiral symmetry is broken

We are exploring phase structure of Wilson-Dirac operator in SU(2) gauge theories

- Location of Aoki phase
- Spectral property of Wilson-Dirac operator
- Spectral property of overlap operator
- Preparation for dynamical overlap simulation

Investigation being extended to

- Topology fixing term (avoiding near-zero modes of H_W)
- Dynamical overlap fermions
- Phase structure in Nf for fundamental/adjoint fermions

