Dynamical lattice QCD simulation with 2+1 flavors of overlap fermions

Hideo Matsufuru for JLQCD Collaboration
(with H.Fukaya, S.Hashimoto, K.Kanaya, T.Kaneko, J.Noaki, M.Okamoto, T.Onogi, and N.Yamada)

Japan Physical Society Spring Meeting 28 March 2007, Tokyo Metropolitan Univ.

JLQCD's overlap project

Dynamical simulation with overlap fermions

- Main run: $16^{3} \times 32(48), a \simeq 0.12 \mathrm{fm}$ (larger size is planned)
- lightest quark mass $\simeq m_{s} / 6$
- Fixed topology by extra Wilson fermion
- need to examine the effect of fixing topology
- $N_{f}=2$: config generation finished, 10000 trj

$$
16^{3} \times 32, a \simeq 0.12 \mathrm{fm}
$$

- $N_{f}=2+1$:
$16^{3} \times 32$, test run (finished)
$16^{3} \times 48$, productive run in progress
Physical results ($N_{f}=2$) \rightarrow talks by other members
This talk: status of $N_{f}=2+1$ simulation

KEK supercomputers

In service since March 2006
Hitachi SR11000

- 2.15TFlops, 512MB memory

IBM Blue Gene

- 57.3TFlops, 5TB memory
- 1024 nodes $\otimes 10$ racks
- $8 \times 8 \times 8$ torus network

Wilson solver: ~29\% of peak performance (on cache) Wilson kernel tuned by IBM Japan (J.Doi and H.Samukawa)

Overlap Dirac operator

$$
D(m)=\left(M_{0}+\frac{m}{2}\right)+\left(M_{0}-\frac{m}{2}\right) \gamma_{5} \operatorname{sign}\left(H_{W}\right)
$$

Zolotarev's partial fractional approximation
J. van den Eshof et al., Comp. Phys. Comm. 146 (2002) 203.

$$
\operatorname{sign}\left(H_{W}\right)=\frac{H_{W}}{\sqrt{H_{W}^{2}}}=H_{W}\left(p_{0}+\sum_{l=1}^{N} \frac{p_{l}}{H_{W}^{2}+q_{l}}\right)
$$

$\left(H_{W}^{2}+q_{l}\right)^{-1}$: determined by Multishift CG simultaneously
HMC time is dominated by inversion of $\left(D^{\dagger} D\right)$

- Nested CG with relaxation of $\epsilon_{i n}$
- 5D CG: factor 2 (4) faster at $N=20$ (10)
- Subtraction of low modes of H_{W} in progress

Hybrid Monte Carlo

$$
S=S_{G}+S_{F}+S_{E}
$$

- Gauge field S_{G} : Iwasaki (renormalization group improved)
- Extra Wilson fermion: suppresses near-zero modes of H_{W}

$$
\operatorname{det}\left(\frac{H_{W}^{2}}{H_{W}^{2}+\mu^{2}}\right)=\int \mathcal{D} \chi^{\dagger} \mathcal{D} \chi \exp \left[-S_{E}\right]
$$

\rightarrow no need of reflection/refraction
Ingredients of accelerating HMC:

- Hasenbusch preconditioning: $S_{F}=S_{P F 1}+S_{P F 2}$

$$
\begin{aligned}
& S_{P F 1}=\phi_{1}^{\dagger}\left[D\left(m^{\prime}\right)^{\dagger} D\left(m^{\prime}\right)\right]^{-1} \phi_{1} \quad \text { (preconditioner) } \\
& S_{P F 2}=\phi_{2}^{\dagger}\left\{D\left(m^{\prime}\right)\left[D(m)^{\dagger} D(m)\right]^{-1} D\left(m^{\prime}\right)^{\dagger}\right\} \phi_{2}
\end{aligned}
$$

- Multi-time step: $\Delta \tau_{(P F 2)}>\Delta \tau_{(P F 1)}>\Delta \tau_{(G)}=\Delta \tau_{(E)}$
- Noisy Metropolis

Performance of $N_{f}=2$ simulations

Performance on Blue Gene (512-node)
$a \sim 0.12 \mathrm{fm}, \mu=0.2$, trajectory length: $\tau=0.5$

- HMC-1: With 4D (relaxed CG) solver

$m_{u d}$	$N_{\tau(P F 2)}$	$\frac{\Delta \tau_{(P F 2)}}{\Delta \tau_{(P F 1)}}$	$\frac{\Delta \tau_{(P F 1)}}{\Delta \tau_{(G, E)}}$	$N_{P F 1,2}$	$P_{\text {acc }}$	time[min]
0.015	9	4	5	10	0.87	112
0.025	8	4	5	10	0.90	94
0.035	6	5	6	10	0.74	63

- HMC-2: less precise 5D solver in MD + noisy Metropolis \rightarrow factor ~ 2 accelerated

$m_{u d}$	$N_{\tau(P F 2)}$	$\frac{\Delta \tau_{(P F 2)}}{\Delta \tau_{(P F 1)}}$	$\frac{\Delta \tau_{(P F 1)}}{\Delta \tau_{(G, E)}}$	$N_{P F 1}$	$N_{P F 2}^{(M D)}$	$N_{P F 2}^{(N M)}$	$P_{a c c}$	time[min]
0.015	13	6	8	10	16	10	0.68	52
0.025	10	6	8	10	16	10	0.82	43
0.035	10	6	8	10	16	10	0.87	36

$N_{f}=2+1$ algorithm (1)

A. Bode et al., hep-lat/9912043
T. DeGrand and S. Schaefer, JHEP 0607 (2006) 020
$H^{2}=D^{\dagger}(m) D(m)$ commutes with γ_{5}

$$
\begin{gathered}
H^{2}=P_{+} H^{2} P_{+}+P_{-} H^{2} P_{-} \equiv Q_{+}+Q_{-} \\
\operatorname{det} H^{2}=\operatorname{det} Q_{+} \cdot \operatorname{det} Q_{-}
\end{gathered}
$$

Eigenvalues of $Q+$ and Q_{-}are the same except for zero modes \Downarrow
One of chirality sector realizes odd number of flavor (zero modes give const. contribution)

- Topology change can be implemented
- Not necessary in our case

$N_{f}=2+1$ algorithm (2)

Pseudofermion action ($\sigma=1$ or -1):

$$
S_{P F 1}=\phi_{1 \sigma}^{\dagger} Q_{\sigma}^{-1}\left(m^{\prime}\right) \phi_{1 \sigma}, \quad S_{P F 2}=\phi_{2 \sigma}^{\dagger}\left(\frac{Q_{\sigma}\left(m^{\prime}\right)}{Q_{\sigma}(m)}\right) \phi_{2 \sigma}
$$

- Refreshing $\phi_{1 \sigma}$ and $\phi_{2 \sigma}$ (with Gaussian ξ_{σ})

$$
\phi_{1 \sigma}=\sqrt{Q_{\sigma}\left(m^{\prime}\right)} \cdot \xi_{1 \sigma}, \quad \phi_{2 \sigma}=\sqrt{\frac{Q_{\sigma}(m)}{Q_{\sigma}\left(m^{\prime}\right)}} \cdot \xi_{2 \sigma} .
$$

- Polynomial or partial fractional approx.
- Other parts are straightforward
e.g., force:

$$
\frac{d S_{P F 1}}{d \tau}=\phi_{1 \sigma}^{\dagger} P_{\sigma}\left(\frac{d H^{2}\left(m^{\prime}\right)^{-1}}{d \tau}\right) P_{\sigma} \phi_{1 \sigma}
$$

etc.

$N_{f}=2+1$: solver/force

Solver: one flavor part is twice faster than $N_{f}=2$ For Q_{σ}, number of H_{W} mult is effectively half of H^{2}.

$$
P_{\sigma} H^{2} P_{\sigma}=P_{\sigma}\left[a+\frac{b}{2}\left\{\gamma_{5}, \operatorname{sign}\left(H_{W}\right)\right\}\right] P_{\sigma}=P_{\sigma}\left[a+\sigma b \cdot \operatorname{sign}\left(H_{W}\right)\right] P_{\sigma}
$$

Total forces of $2+1$ flavors are similar to $N_{f}=2$

$$
N_{f}=2+1: a \text { vs } m_{q}
$$

- $\beta=2.30,16^{3} \times 32$ (test run), 1000 trjs, $l_{t r j}=0.5$
- a is determined by hadronic radius (Sommer scale)

Performance of $N_{f}=2+1$ simulations

Performance of productive run on Blue Gene 1024-node

- $16^{3} \times 48, a \sim 0.12 \mathrm{fm}, l_{\text {trj }}=1$, just started
- Now HMC-1: With 4D (relaxed CG) solver

$m_{u d}$	$N_{\tau(P F 2)}$	$\frac{\Delta \tau_{(P F 2)}}{\Delta \tau_{(P F 1)}}$	$\frac{\Delta \tau_{(P F 1)}}{\Delta \tau_{(G, E)}}$	$N_{P F 1,2}$	$P_{a c c}$	time[min]
0.015	18	4	5	10	0.87	$265(112)$
0.025	16	4	5	10	0.90	$210(94)$
0.035	16	5	6	10	0.74	$195(63)$
(corresponding $N_{f}=2$ at $\left.l_{t r j}=1, N_{t}=32\right)$						

- Implementation of 5D solver is in progress
\rightarrow factor ~ 2 acceleration expected

Summary/Outlook

JLQCD's dynamical overlap project

- $N_{f}=2$: production of configs finished
- $16^{3} \times 32, a \simeq 0.12 \mathrm{fm}, \simeq m_{s} / 6$
- Measuring observables in progress
- Global Q dependence
- $N_{f}=2+1$: production run in progress
- $16^{3} \times 48, a \simeq 0.12 \mathrm{fm}, \simeq m_{s} / 6$
- Still factor ≥ 2 acceleration expected
- Outlook
- Physics results
- Larger lattices $\left(24^{3} \times\right.$ something $)$

