Dynamical lattice QCD simulation with 2+1 flavors of overlap fermions

Hideo Matsufuru for JLQCD Collaboration (with H.Fukaya, S.Hashimoto, K.Kanaya, T.Kaneko, J.Noaki, M.Okamoto, T.Onogi, and N.Yamada)

Japan Physical Society Spring Meeting 28 March 2007, Tokyo Metropolitan Univ.

JLQCD's overlap project

Dynamical simulation with overlap fermions

- Main run: $16^3 \times 32(48)$, $a \simeq 0.12$ fm (larger size is planned)
- lightest quark mass $\simeq m_s/6$
- Fixed topology by extra Wilson fermion
 - need to examine the effect of fixing topology
- $N_f = 2$: config generation finished, 10000 trj $16^3 \times 32$, $a \simeq 0.12$ fm

•
$$N_f = 2 + 1$$
:

 $16^3 \times 32$, test run (finished)

 $16^3 \times 48$, productive run in progress

Physical results ($N_f = 2$) \rightarrow talks by other members This talk: status of $N_f = 2 + 1$ simulation

KEK supercomputers

In service since March 2006

Hitachi SR11000

• 2.15TFlops, 512MB memory

IBM Blue Gene

- 57.3TFlops, 5TB memory
- 1024 nodes ⊗10 racks
- $8 \times 8 \times 8$ torus network

Wilson solver: ~29% of peak performance (on cache) Wilson kernel tuned by IBM Japan (J.Doi and H.Samukawa)

Overlap Dirac operator

$$D(m) = \left(M_0 + \frac{m}{2}\right) + \left(M_0 - \frac{m}{2}\right)\gamma_5 \operatorname{sign}(H_W)$$

Zolotarev's partial fractional approximation

J. van den Eshof et al., Comp. Phys. Comm. 146 (2002) 203.

$$\operatorname{sign}(H_W) = \frac{H_W}{\sqrt{H_W^2}} = H_W \left(p_0 + \sum_{l=1}^N \frac{p_l}{H_W^2 + q_l} \right)$$

 $(H_W^2 + q_l)^{-1}$: determined by Multishift CG simultaneously

HMC time is dominated by inversion of $(D^{\dagger}D)$

- Nested CG with relaxation of ϵ_{in}
- 5D CG: factor 2 (4) faster at N = 20 (10)
 - Subtraction of low modes of H_W in progress

Hybrid Monte Carlo

 $S = S_G + S_F + S_E$

- Gauge field S_G : Iwasaki (renormalization group improved)
- Extra Wilson fermion: suppresses near-zero modes of H_W

$$\det\left(\frac{H_W^2}{H_W^2 + \mu^2}\right) = \int \mathcal{D}\chi^{\dagger} \mathcal{D}\chi \exp[-S_E]$$

 \rightarrow no need of reflection/refraction

Ingredients of accelerating HMC:

• Hasenbusch preconditioning: $S_F = S_{PF1} + S_{PF2}$

 $S_{PF1} = \phi_1^{\dagger} [D(m')^{\dagger} D(m')]^{-1} \phi_1 \text{ (preconditioner)}$ $S_{PF2} = \phi_2^{\dagger} \{ D(m') [D(m)^{\dagger} D(m)]^{-1} D(m')^{\dagger} \} \phi_2$

- Multi-time step: $\Delta \tau_{(PF2)} > \Delta \tau_{(PF1)} > \Delta \tau_{(G)} = \Delta \tau_{(E)}$
- Noisy Metropolis

Performance of N_f =2 simulations

Performance on Blue Gene (512-node) $a \sim 0.12$ fm, $\mu = 0.2$, trajectory length: $\tau = 0.5$

• HMC-1: With 4D (relaxed CG) solver

m_{ud}	$N_{\tau(PF2)}$	$\frac{\Delta \tau_{(PF2)}}{\Delta \tau_{(PF1)}}$	$\frac{\Delta \tau_{(PF1)}}{\Delta \tau_{(G,E)}}$	$N_{PF1,2}$	P_{acc}	time[min]
0.015	9	4	5	10	0.87	112
0.025	8	4	5	10	0.90	94
0.035	6	5	6	10	0.74	63

• HMC-2: less precise 5D solver in MD + noisy Metropolis \rightarrow factor \sim 2 accelerated

m_{ud}	$N_{\tau(PF2)}$	$\frac{\Delta \tau_{(PF2)}}{\Delta \tau_{(PF1)}}$	$\frac{\Delta \tau_{(PF1)}}{\Delta \tau_{(G,E)}}$	N_{PF1}	$N_{PF2}^{(MD)}$	$N_{PF2}^{(NM)}$	P_{acc}	time[min]
0.015	13	6	8	10	16	10	0.68	52
0.025	10	6	8	10	16	10	0.82	43
0.035	10	6	8	10	16	10	0.87	36

$N_f = 2 + 1$ algorithm (1)

A. Bode et al., hep-lat/9912043 T. DeGrand and S. Schaefer, JHEP 0607 (2006) 020

 $H^2 = D^{\dagger}(m)D(m)$ commutes with γ_5

$$H^2 = P_+ H^2 P_+ + P_- H^2 P_- \equiv Q_+ + Q_-$$

 $\det H^2 = \det Q_+ \cdot \det Q_-$

Eigenvalues of Q+ and Q_- are the same except for zero modes $\downarrow\downarrow$ One of chirality sector realizes odd number of flavor (zero modes give const. contribution)

 Topology change can be implemented — Not necessary in our case $N_f = 2 + 1$ algorithm (2)

Pseudofermion action ($\sigma = 1 \text{ or } -1$):

$$S_{PF1} = \phi_{1\sigma}^{\dagger} Q_{\sigma}^{-1}(m') \phi_{1\sigma}, \qquad S_{PF2} = \phi_{2\sigma}^{\dagger} \left(\frac{Q_{\sigma}(m')}{Q_{\sigma}(m)} \right) \phi_{2\sigma}$$

• Refreshing $\phi_{1\sigma}$ and $\phi_{2\sigma}$ (with Gaussian ξ_{σ})

$$\phi_{1\sigma} = \sqrt{Q_{\sigma}(m')} \cdot \xi_{1\sigma}, \qquad \phi_{2\sigma} = \sqrt{\frac{Q_{\sigma}(m)}{Q_{\sigma}(m')}} \cdot \xi_{2\sigma}.$$

- Polynomial or partial fractional approx.

• Other parts are straightforward

e.g., force:

$$\frac{dS_{PF1}}{d\tau} = \phi_{1\sigma}^{\dagger} P_{\sigma} \left(\frac{dH^2(m')^{-1}}{d\tau}\right) P_{\sigma} \phi_{1\sigma}$$

etc.

$N_f = 2 + 1$: solver/force

Solver: one flavor part is twice faster than $N_f = 2$ For Q_{σ} , number of H_W mult is effectively half of H^2 .

$$P_{\sigma}H^{2}P_{\sigma} = P_{\sigma}\left[a + \frac{b}{2}\{\gamma_{5}, \operatorname{sign}(H_{W})\}\right]P_{\sigma} = P_{\sigma}\left[a + \sigma b \cdot \operatorname{sign}(H_{W})\right]P_{\sigma}$$

Total forces of 2+1 flavors are similar to $N_f = 2$

N_f =2+1: $a \text{ vs } m_q$

- $\beta = 2.30, 16^3 \times 32$ (test run), 1000 trjs, $l_{trj} = 0.5$
- *a* is determined by hadronic radius (Sommer scale)

Performance of $N_f=2+1$ simulations

Performance of productive run on Blue Gene 1024-node

- $16^3 \times 48$, $a \sim 0.12$ fm, $l_{trj} = 1$, just started
- Now HMC-1: With 4D (relaxed CG) solver

m_{ud}	$N_{\tau(PF2)}$	$\frac{\Delta \tau_{(PF2)}}{\Delta \tau_{(PF1)}}$	$\frac{\Delta \tau_{(PF1)}}{\Delta \tau_{(G,E)}}$	$N_{PF1,2}$	P_{acc}	time[min]
0.015	18	4	5	10	0.87	265(112)
0.025	16	4	5	10	0.90	210(94)
0.035	16	5	6	10	0.74	195(63)

(corresponding $N_f = 2$ at $l_{trj} = 1$, N_t =32)

- Implementation of 5D solver is in progress
 - \rightarrow factor \sim 2 acceleration expected

Summary/Outlook

JLQCD's dynamical overlap project

- $N_f = 2$: production of configs finished
 - $\circ~16^3 imes 32$, $a\simeq 0.12$ fm, $\simeq m_s/6$
 - Measuring observables in progress
 - \circ Global Q dependence
- $N_f = 2 + 1$: production run in progress
 - $\circ~16^3 imes 48$, $a\simeq 0.12$ fm, $\simeq m_s/6$
 - $^{\circ}~$ Still factor ${\geq}2$ acceleration expected
- Outlook
 - Physics results
 - \circ Larger lattices (24³ × something)