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Introduction (1)

Strong interaction is described by QCD
— difficult to solve analytically

• Perturbation applies only at high energy
← asymptotic freedom

• Model calculations suffer from systematic uncertainties

Need of general procedure from the first principle
⇒ Lattice QCD

K.G.Wilson, Phys. Rev. D 10 (1974) 2445.
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Introduction (2)

Lattice QCD: gauge theory on 4D Euclidean lattice
• Regularized by lattice
• Continuum limit (a→ 0)→ QCD
• Based on gauge principle
• Path integral quantization
• Numerical simulation =

nonperturbative calculation is possible

Powerful method for low-energy physics of QCD
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Introduction (3)

QCD action (Euclidean space-time)

Scont
QCD =

∫

d4x

[

1

4
F a

µνF
a
µν + ψ̄(x)(γµDµ +m)ψ(x)

]

⇓ discretize

Lattice QCD
Slatt

QCD = SG[Uµ(x)] + SF (ψ̄, ψ, U)

(now x = an, n ∈ Z4)

• Gauge field: Uµ(x) ' exp(igaAµ(x))

— on links (bonds of nearest sites)
• Quark field ψ̄, ψ: Grassmann variables on sites

— integrated by hand (Grassmann integration)
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Introduction (4)

Lattice QCD actions:
approaches to the continuum actions as a→ 0

Gauge field:
SG =

∑

x,µ>ν

(

1−
1

3
ReTrPµν(x)

)

,

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)Uν(x)

' exp(ia2gFµν)

One can add higher order terms in a
→ improved actions (e.g., Iwasaki gauge action)

(Fermion action will be argued later)
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Introduction (5)

Path integral quantization:

〈O〉 =

∫

DUDψ̄Dψ exp(−SQCD)

• Integration over compact SU(3) group→ no gauge fixing
• Fermion part: Grassmann integral

∫

Dψ̄Dψ exp(−ψ̄D[U ]ψ) = detD[U ]

⇒ Monte Carlo simulation (important sampling)

〈O〉 '
1

N

N
∑

i=1

O[Ui]

for gauge configuration Ui = {Uµ(x)}i generated with
probability ∝ detD[U ] · exp(−SG).
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Simulation algorithm (1)

Numerical simulation:
– Quenched approximation: detD → 1

• Neglect all quark loop effect
• Low-lying hadron spectrum: consistent within 10%

– Dynamical simulations
• Costs more than 100 times of quenched approx.
• Hybrid Monte Carlo algorithm — currently standard
• Pseudofermion field (bosonic field)

detD =

∫

Dφ̄Dφ exp(−φ̄D−1φ)

For positive definiteness, detD2 = detD†D (Nf = 2)
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Simulation algorithm (2)

Hybrid Monte Carlo algorithm
• Generate gauge configurations as 4D microcanonical

ensemble
• Conjugate momenta Hµ(x) to gauge field Uµ(x)
• Hamiltonian:

H =
1

2

∑

x,µ

trH2
µ(x) + SG[U ] + SPF [U ]

• Molecular dynamics — evolution with Hamilton equation
d

dτ
Uµ(τ) = Hµ(τ)

d

dτ
Hµ(τ) = −

∂

∂Uµ

(SG + SF )

In practice, leapfrog evolution is applied
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Simulation algorithm (3)

Hybrid Monte Carlo algorithm (cont.)
• Initial momenta: given by Gaussian distribution
• Fermion field: treated as external field

P [φ] ∝ exp(−φ†[D†D]−1φ) (Nf = 2),

← P [ξ] ∝ exp(−ξ†ξ), φ = D†ξ

— φ is constant during evolution of U and H
• Metropolis test at the end of evolution:

corrects finite step size error→ Detailed balance

Accepted new configuration with probability

Pacc = min{1, e−H[Unew]+H[Uold]}
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Simulation algorithm (4)

Recipe of Hybrid Monte Carlo:
• Refresh conjugate momenta and fermion fields with

Gaussian distribution
• Molecular dynamical evolution for certain trajectory length
• Metropolis test

Repeat these steps for enough number of trajectories
Measure observables on these configurations
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Overlap fermion (1)

Lattice fermion formulation has been serious problem
Naive discretization:

SF =
X

x

ψ̄

2

4

1

2

X

µ

[Uµ(x)ψ(x) − Uµ(x− µ̂)ψ(x− µ̂)] +mψ(x)

3

5

a = 1, Uµ ' 1 + igAµ, µ̂: unit vector in µ-th direction

16 particle modes appear (15 “doublers”)
— in momentum space, poles at pµ ∼ 0, π

Sq(p)|free =
1

P

µγµ sin(pµa) +ma

Wilson fermion: add Wilson term
r

2

X

x,µ

ψ̄ [Uµ(x)ψ(x) + Uµ(x− µ̂)ψ(x− µ̂)2ψ(x)]

This term breaks chiral symmetry explicitly
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Overlap fermion (2)

Nielsen-Ninomiya’ theorem:
Nielsen and Ninomiya, Nucl. Phys. B185 (1981) 20.

Suppose a lattice fermion action SF = ψ̄D[U ]ψ satisfies
the following condition.
• Translational invariance
• Chiral symmetry: Dγ5 + γ5D = 0

• Hermiticity
• Bilinear in fermion field
• Locality

Then, doublers exist.
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Overlap fermion (3)

Recent progress: realization of chiral symmetry on the lattice
Ginsparg-Wilson relation: least broken chiral symmetry

Ginsparg and Wilson, Phys. Rev. D 25 (1982) 2649.

Dγ5 + γ5D = aRaDγ5D

Chiral symmetry on the lattice:
Hasenfratz, Laliena and Niedermayer, Phys. Lett. B427 (1998) 342;
Lüscher, Phys. Lett. B428 (1998) 342.

ψ → ψ + γ5(1− a
R

2
D)ψ

ψ̄ → ψ̄ + ψ̄(1− a
R

2
D)γ5

Fermion formulation which satisfies Ginsparg-Wilson relation
realizes this lattice chiral symmetry
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Overlap fermion (4)

Overlap fermion
Neuberger, Phys. Lett. B417 (1998) 141; B427 (1998) 353.

D =
1

Ra

[

1 +
γ5H5
√

H2
W

]

=
1

Ra

[

1 + γ5sign(H5)
]

HW : Wilson fermion kernel with negative mass M0

(M0 is not quark mass!)
• Satisfies the Ginsparg-Wilson relation
• Ns →∞ limit of Domain-wall fermion

(5D formulation for chirally symmetric fermions)
• Numerical cost is high: evaluation of sign(HW )

— has become possible only with recent developments of
algorithms and computers
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JLQCD’s overlap project (1)

Dynamical simulation with overlap fermions
• Main run: 163 × 32, a ' 0.12fm (larger size is planned)
• lightest quark mass ' ms/6

• Fixed topology by extra Wilson fermion
– need to examine the effect of fixing topology

• Nf = 2 is now in productive run
• Nf = 2 + 1 is in progress
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JLQCD’s overlap project (2)

New supercomputer at KEK (March 2006∼)
Hitachi SR11000
• 2.15TFlops, 512MB memory
• 16 Power5+ ⊗16 nodes

IBM System Blue Gene Solution
• 57.3TFlops, 5TB memory
• 1024 nodes ⊗10 racks
• 8× 8× 8 torus network
• 2 PowerPC440 shares 4MB cache

Wilson kernel for BG:
Tuned by IBM Japan (J.Doi and H.Samukawa)
Wilson solver: ∼29% of peak performance
(on cache)
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JLQCD’s overlap project (3)

Action: S = SG + SF + SE

• Gauge field SG: Iwasaki (renormalization group improved)
• Overlap fermion (Nf = 2): SF = φ†[D(m)†D(m)]−1φ

overlap Dirac operator

D(m) =
(

m0 +
m

2

)

+
(

m0 −
m

2

)

γ5sign(HW )

HW = γ5DW , DW is Wilson-Dirac operator with −M0

• Extra Wilson fermion:

det

(

H2
W

H2
W + µ2

)

=

∫

Dχ†Dχ exp[−SE ]

— suppresses near-zero modes of HW

Vranas (2000); Fukaya (2006); S.Hashimoto et al., hep-lat/0610011
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Implementation of overlap fermion (1)

Overlap Dirac operator

D(m) =
(

M0 +
m

2

)

+
(

M0 −
m

2

)

γ5sign(HW )

Zolotarev’s partial fractional approximation
J. van den Eshof et al., Comp. Phys. Comm. 146 (2002) 203.

sign(HW ) =
HW
√

H2
W

= HW

(

p0 +

N
∑

l=1

pl

H2
W + ql

)

• (H2
W + ql)

−1: determined by Multishift CG simultaneously
• For smaller λmin, larger N is needed for accuracy

e.g. for N=10, O(10−7) accuracy for λmin=0.05 andO(10−5) for 0.01.

• Subtraction of low modes of HW

→ sign(λ) (λ < λthrs) is explicitly determined
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Implementation of overlap fermion (2)

� Nested CG algorithm
• Outer CG for D(m), inner CG for (H2

W + ql)
−1 (multishift)

A.Frommer et al., Int. J. Mod. Phys. C 6 (1995) 627.

• Relaxed CG: εin is relaxed as outer iteration proceeds
N.Cundy et al., Comp. Phys. Comm. 165 (2004) 221.

• Subtraction of low-modes of HW applicable (safe from λmin ∼ 0)
• Cost is almost unchanged as N

� 5-dimensional CG
A. Borici, hep-lat/0402035; R.G.Edwards et al., PoS LAT2005 (2006) 146.

• Making use of Schur decomposition
• Even-odd preconditioning
• Cost increases linearly in N
• Subtraction of low-modes of HW is not applicable

→ difficulty at λmin ∼ 0
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Implementation of overlap fermion (3)

Comparison:
(a ' 0.12fm, m ' 0.4ms, single conf.)

0.0 5.0×105 1.0×106 1.5×106

#mult of DW

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

|r|
2 /|b

|2

5D (N=8)
5D (N=12)
5D (N=20)
relaxed CG
CG

0 0.02 0.04 0.06 0.08 0.1 0.12
amq

0.0

5.0×105

1.0×106

1.5×106

2.0×106

#m
ul

t o
f D

W

5D (N=12)
5D (N=20)
relaxed CG
CG

• Relaxed CG is factor 2 faster than standard CG
• 5D solver is 2-3 times faster than relaxed CG for N = 20

• If λ ' 0 does not appear, 5D solver has advantage
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Nf = 2 algorithm (1)

Building blocks of accelerating HMC:
• Hasenbusch preconditioning: SF = SPF1 + SPF2

M.Hasenbusch, Phys. Lett. B 519 (2001) 177.

SPF1 = φ†1[D(m′)†D(m′)]−1φ1 (preconditioner)

SPF2 = φ†2
{

D(m′)[D(m)†D(m)]−1D(m′)†
}

φ2

• Multi-time step: ∆τ(PF2) > ∆τ(PF1) > ∆τ(G) = ∆τ(E)

J.C.Sexton and D.H.Weingarten, Nucl. Phys. B 380 (1992) 665.

• Overlap solver: relaxed CG/5D CG
• Reflection/refraction at λmin = 0

Z.Fodor, S.D.Katz and K.K.Szabo, JHEP0408 (2004) 003.
– Needs monitoring of λmin and inverting D†D twice
⇒ skipped: λmin = 0 is avoided by SE
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Nf = 2 algorithm (2)

Most time consuming part: solvers in molecular dynamics
Cost in MD is reduced by
• assuming no near-zero mode
• fixed λthrs, N ' 10→ adopting 5D solver
• no eigenvalue determination

Error in MD is corrected by Noisy Metropolis:
A.D.Kennedy and J.Kuti, Phys. Rev. Lett. 54 (1985) 2473.

After usual Metropolis, accept Unew with P = min{1, e−dS},

dS =
∣

∣W−1[Unew]W [Uold] ξ
∣

∣

2
− |ξ|2

where W = D(m)/D′(m),
• D′: relaxed overlap operator used in MD
• D: accurate overlap operator
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Nf = 2 algorithm (3)

Performance on Blue Gene (512-node)
a ∼ 0.12fm, µ = 0.2, trajectory length: τ = 0.5

• HMC-1: With 4D (relaxed CG) solver
mud Nτ(PF2)

∆τ(P F2)

∆τ(P F1)

∆τ(P F1)

∆τ(G,E)
NPF1,2 Pacc time[min]

0.015 9 4 5 10 0.87 112

0.025 8 4 5 10 0.90 94

0.035 6 5 6 10 0.74 63

• HMC-2: less precise 5D solver in MD + noisy Metropolis
→ factor ∼2 accelerated

mud Nτ(PF2)
∆τ(P F2)

∆τ(P F1)

∆τ(P F1)

∆τ(G,E)
NPF1 N

(MD)
PF2 N

(NM)
PF2 Pacc time[min]

0.015 13 6 8 10 16 10 0.68 52

0.025 10 6 8 10 16 10 0.82 43

0.035 10 6 8 10 16 10 0.87 36
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Nf = 2 + 1 algorithm (1)

A. Bode et al., hep-lat/9912043

T. DeGrand and S. Schaefer, JHEP 0607 (2006) 020

H2 = D†(m)D(m) commutes with γ5

H2 = P+H
2P+ + P−H

2P− ≡ Q+ +Q−

detH2 = detQ+ · detQ−

Eigenvalues of Q+ and Q− are the same except for zero modes
⇓

One of chirality sector realizes odd number of flavor
(zero modes give const. contribution)

• Topology change can be implemented
— Not necessary in our case
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Nf = 2 + 1 algorithm (2)

Pseudofermion action (σ = 1 or −1):

SPF1 = φ†1σQ
−1
σ (m′)φ1σ, SPF2 = φ†2σ

(

Qσ(m′)

Qσ(m)

)

φ2σ

• Refreshing φ1σ and φ2σ (with Gaussian ξσ)

φ1σ =
√

Qσ(m′) · ξ1σ, φ2σ =

√

Qσ(m)

Qσ(m′)
· ξ2σ.

— Polynomial or partial fractional approx.

• Other parts are straightforward
e.g., force:

dSPF1

dτ
= φ†1σPσ

(

dH2(m′)−1

dτ

)

Pσφ1σ

etc.
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Nf = 2 + 1 algorithm (3)

Check: Nf=2 vs Nf=1+1
163 × 32 lattice, β = 2.5, mq = 0.09

• Two positive chirality PS-fermions
• HMC-1 (4D solver, w/o noisy Metropolis)

— compared with Nf = 2, HMC-1
• Initial: Nf = 2 thermalized config.
• M

(pf2)
MD = 4, R(pf1)

MD = 5, R(GE)
MD = 6, ltrj = 0.5, m′ = 0.4

trj plaq Pacc min/trj(BG 512 node)

Nf=1+1 1500 0.651219(16) ∼0.8 23

Nf=2 1000 0.651173(21) 0.81 13

• Consistent with Nf = 2.
• Increased cost: largely due to refreshment of φ’s

(Now Zolotarev approx. is used)
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Nf = 2 + 1 algorithm (4)

Test run:
β = 2.30, mud = 0.10, ms = 0.10, Q = 0

• Nf = 2 ⊕ positive chirality sector
• Other parameters are same as Nf = 2

• HMC-1 (4D solver, w/o noisy Metropolis)
• M

(pf2)
MD = 5, R(pf1)

MD = 5, R(GE)
MD = 6, ltrj = 0.5, m′ = 0.4

• Thermalization: 300 trjs (very preliminary)

trj plaq Pacc time/trj(BG 512 node)

Nf=2+1 150 0.609724(50) ∼0.76 70 min

Nf=2 4600 0.614685(12) 0.85 40 min
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Nf = 2 + 1 algorithm (5)

Solver convergence:
One flavor part is twice faster than Nf = 2
→ total cost is ∼ 1.5 times

Force hierarchy:
Total forces of 2+1 flavors are similar to Nf = 2, 1+1
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|2 / |

b|
2
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Nf=1, PF2

β=2.30,  mud = ms = 0.10

Nf=2+1

0 20 40 60 80 100
trj
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F m
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extra Wilson
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PS2 (ud)
PF2 (s)
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Nf=2+1 (beta=2.30, m=0.10)

Lattice QCD simulation with 2+1 flavorsof dynamical overlap fermions – p.29



Nf = 2 + 1 algorithm (6)

Very preliminary result
β = 2.30, mud = ms = 0.10, Q = 0

• 300 thermalization trjs.
• 30 configs (5 trj separated)

a is determined by hadronic radius (Sommer scale)
— tendency consistent with Nf = 2

1.6 1.8 2.0 2.2 2.4 2.6 2.8
β

0.04
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0.08
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0.14

0.16

a 
[f

m
]

Nf=0, Iwasaki (CP-PACS, 2004)
Nf=0, Iwasaki + extra Wilson
Nf=2, Iwasaki + ex Wilson + overlap
Nf=2, Iwasaki + clover (CP-PACS, 2002)
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mud  (= ms )
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0.14

0.15

a 
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m
]

Nf=2
Nf=2+1

quenched (Iwasaki + ex Wilson)

β=2.30
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Summary/Outlook

JLQCD’s dynamical overlap project

Nf = 2 is now in productive run at 163 × 32, a ' 0.12fm, ' ms/6

• Best solution: less precise 5D solver ⊕ Noisy Metropolis
• Various observables are being measured
• Effect of fixed topology (simulations at various Q)

We are preparing for Nf = 2 + 1 simulations

• Improvement and parameter tuning are in progress
• Main target of the next year
• Larger lattice (243 × 48) is planned
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