Lattice QCD simulation with 2+1 flavors of dynamical overlap fermions

Hideo Matsufuru for JLQCD Collaboration (with H.Fukaya, S.Hashimoto, K.Kanaya, T.Kaneko, M.Okamoto, T.Onogi, and N.Yamada)

29 November 2006, at National Taiwan University

Contents

- Introduction to lattice QCD
- Simulation algorithm (Hybrid Monte Carlo)
- Overlap fermion
- JLQCD Collaboration's overlap project
- Implementation of overlap fermion
- $N_f = 2$ algorithm
- $N_f = 2 + 1$ algorithm

Introduction (1)

Strong interaction is described by QCD — difficult to solve analytically

- Perturbation applies only at high energy

 asymptotic freedom
- Model calculations suffer from systematic uncertainties

Need of general procedure from the first principle \Rightarrow Lattice QCD

K.G.Wilson, Phys. Rev. D 10 (1974) 2445.

Introduction (2)

Lattice QCD: gauge theory on 4D Euclidean lattice

- Regularized by lattice
- Continuum limit $(a \rightarrow 0) \rightarrow QCD$
- Based on gauge principle
- Path integral quantization
- Numerical simulation = nonperturbative calculation is possible

Powerful method for low-energy physics of QCD

Introduction (3)

QCD action (Euclidean space-time)

$$S_{QCD}^{cont} = \int d^4x \left[\frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \bar{\psi}(x) (\gamma_\mu D_\mu + m) \psi(x) \right]$$

↓ discretize

Lattice QCD

$$S_{QCD}^{latt} = S_G[U_\mu(x)] + S_F(\bar{\psi}, \psi, U)$$

(now $x = an, n \in Z^4$)

- Gauge field: $U_{\mu}(x) \simeq \exp(igaA_{\mu}(x))$
 - on links (bonds of nearest sites)
- Quark field $\overline{\psi}$, ψ : Grassmann variables on sites — integrated by hand (Grassmann integration)

Introduction (4)

Lattice QCD actions:

approaches to the continuum actions as $a \rightarrow 0$ Gauge field:

$$S_G = \sum_{x,\mu > \nu} \left(1 - \frac{1}{3} \operatorname{ReTr} P_{\mu\nu}(x) \right),$$

$$P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}(x)$$

$$\simeq \exp(ia^2gF_{\mu\nu})$$

One can add higher order terms in $a \rightarrow$ improved actions (e.g., Iwasaki gauge action)

(Fermion action will be argued later)

Introduction (5)

Path integral quantization:

$$\langle O \rangle = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \exp(-S_{QCD})$$

- Integration over compact SU(3) group \rightarrow no gauge fixing
- Fermion part: Grassmann integral

$$\int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp(-\bar{\psi}D[U]\psi) = \det D[U]$$

 \Rightarrow Monte Carlo simulation (important sampling)

$$\langle O \rangle \simeq \frac{1}{N} \sum_{i=1}^{N} O[U_i]$$

for gauge configuration $U_i = \{U_\mu(x)\}_i$ generated with probability $\propto \det D[U] \cdot \exp(-S_G)$.

Simulation algorithm (1)

Numerical simulation:

- Quenched approximation: $\det D \to 1$
 - Neglect all quark loop effect
 - Low-lying hadron spectrum: consistent within 10%
- Dynamical simulations
 - Costs more than 100 times of quenched approx.
 - Hybrid Monte Carlo algorithm currently standard
 - Pseudofermion field (bosonic field)

$$\det D = \int \mathcal{D}\bar{\phi}\mathcal{D}\phi \exp(-\bar{\phi}D^{-1}\phi)$$

For positive definiteness, det $D^2 = \det D^{\dagger} D$ ($N_f = 2$)

Simulation algorithm (2)

Hybrid Monte Carlo algorithm

- Generate gauge configurations as 4D microcanonical ensemble
- Conjugate momenta $H_{\mu}(x)$ to gauge field $U_{\mu}(x)$
- Hamiltonian:

$$\mathcal{H} = \frac{1}{2} \sum_{x,\mu} \operatorname{tr} H^2_{\mu}(x) + S_G[U] + S_{PF}[U]$$

Molecular dynamics — evolution with Hamilton equation

$$\frac{d}{d\tau}U_{\mu}(\tau) = H_{\mu}(\tau)$$
$$\frac{d}{d\tau}H_{\mu}(\tau) = -\frac{\partial}{\partial U_{\mu}}(S_G + S_F)$$

In practice, leapfrog evolution is applied

Simulation algorithm (3)

Hybrid Monte Carlo algorithm (cont.)

- Initial momenta: given by Gaussian distribution
- Fermion field: treated as external field

 $P[\phi] \propto \exp(-\phi^{\dagger} [D^{\dagger} D]^{-1} \phi) \quad (N_f = 2),$ $\leftarrow P[\xi] \propto \exp(-\xi^{\dagger} \xi), \quad \phi = D^{\dagger} \xi$

— ϕ is constant during evolution of U and H

 Metropolis test at the end of evolution: corrects finite step size error → Detailed balance
 Accepted new configuration with probability

$$P_{acc} = \min\{1, e^{-\mathcal{H}[U_{new}] + \mathcal{H}[U_{old}]}\}$$

Simulation algorithm (4)

Recipe of Hybrid Monte Carlo:

- Refresh conjugate momenta and fermion fields with Gaussian distribution
- Molecular dynamical evolution for certain trajectory length
- Metropolis test

Repeat these steps for enough number of trajectories Measure observables on these configurations

Overlap fermion (1)

Lattice fermion formulation has been serious problem Naive discretization:

$$S_F = \sum_{x} \bar{\psi} \left[\frac{1}{2} \sum_{\mu} [U_{\mu}(x)\psi(x) - U_{\mu}(x-\hat{\mu})\psi(x-\hat{\mu})] + m\psi(x) \right]$$

a = 1, $U_{\mu} \simeq 1 + igA_{\mu}$, $\hat{\mu}$: unit vector in μ -th direction

16 particle modes appear (15 "doublers")

— in momentum space, poles at $p_{\mu} \sim 0$, π

$$S_q(p)|_{free} = \frac{1}{\sum_{\mu} \gamma_\mu \sin(p_\mu a) + ma}$$

Wilson fermion: add Wilson term

$$\frac{r}{2} \sum_{x,\mu} \bar{\psi} \left[U_{\mu}(x)\psi(x) + U_{\mu}(x-\hat{\mu})\psi(x-\hat{\mu})2\psi(x) \right]$$

This term breaks chiral symmetry explicitly

Overlap fermion (2)

Nielsen-Ninomiya' theorem:

Nielsen and Ninomiya, Nucl. Phys. B185 (1981) 20.

Suppose a lattice fermion action $S_F = \overline{\psi}D[U]\psi$ satisfies the following condition.

- Translational invariance
- Chiral symmetry: $D\gamma_5 + \gamma_5 D = 0$
- Hermiticity
- Bilinear in fermion field
- Locality

Then, doublers exist.

Overlap fermion (3)

Recent progress: realization of chiral symmetry on the lattice Ginsparg-Wilson relation: least broken chiral symmetry

Ginsparg and Wilson, Phys. Rev. D 25 (1982) 2649.

$$D\gamma_5 + \gamma_5 D = aRaD\gamma_5 D$$

Chiral symmetry on the lattice:

Hasenfratz, Laliena and Niedermayer, Phys. Lett. B427 (1998) 342; Lüscher, Phys. Lett. B428 (1998) 342.

$$\psi \rightarrow \psi + \gamma_5 (1 - a \frac{R}{2} D) \psi$$

 $\bar{\psi} \rightarrow \bar{\psi} + \bar{\psi} (1 - a \frac{R}{2} D) \gamma_5$

Fermion formulation which satisfies Ginsparg-Wilson relation realizes this lattice chiral symmetry

Overlap fermion (4)

Overlap fermion

Neuberger, Phys. Lett. B417 (1998) 141; B427 (1998) 353.

$$D = \frac{1}{Ra} \left[1 + \frac{\gamma_5 H_5}{\sqrt{H_W^2}} \right] = \frac{1}{Ra} \left[1 + \gamma_5 \operatorname{sign}(H_5) \right]$$

- H_W : Wilson fermion kernel with negative mass M_0 (M_0 is not quark mass!)
 - Satisfies the Ginsparg-Wilson relation
 - $N_s \rightarrow \infty$ limit of Domain-wall fermion (5D formulation for chirally symmetric fermions)
 - Numerical cost is high: evaluation of $sign(H_W)$
 - has become possible only with recent developments of algorithms and computers

JLQCD's overlap project (1)

Dynamical simulation with overlap fermions

- Main run: $16^3 \times 32$, $a \simeq 0.12$ fm (larger size is planned)
- lightest quark mass $\simeq m_s/6$
- Fixed topology by extra Wilson fermion
 - need to examine the effect of fixing topology
- $N_f = 2$ is now in productive run
- $N_f = 2 + 1$ is in progress

JLQCD's overlap project (2)

New supercomputer at KEK (March 2006 \sim) Hitachi SR11000

- 2.15TFlops, 512MB memory
- 16 Power5+ \otimes 16 nodes

IBM System Blue Gene Solution

- 57.3TFlops, 5TB memory
- 1024 nodes \otimes 10 racks
- $8 \times 8 \times 8$ torus network
- 2 PowerPC440 shares 4MB cache

Wilson kernel for BG: Tuned by IBM Japan (J.Doi and H.Samukawa) Wilson solver: ~29% of peak performance (on cache)

JLQCD's overlap project (3)

Action: $S = S_G + S_F + S_E$

- Gauge field *S_G*: Iwasaki (renormalization group improved)
- Overlap fermion ($N_f = 2$): $S_F = \phi^{\dagger} [D(m)^{\dagger} D(m)]^{-1} \phi$ overlap Dirac operator

$$D(m) = \left(m_0 + \frac{m}{2}\right) + \left(m_0 - \frac{m}{2}\right)\gamma_5 \operatorname{sign}(H_W)$$

 $H_W = \gamma_5 D_W$, D_W is Wilson-Dirac operator with $-M_0$

• Extra Wilson fermion:

$$\det\left(\frac{H_W^2}{H_W^2 + \mu^2}\right) = \int \mathcal{D}\chi^{\dagger} \mathcal{D}\chi \exp[-S_E]$$

— suppresses near-zero modes of *H_W Vranas (2000); Fukaya (2006); S.Hashimoto et al., hep-lat/0610011* Implementation of overlap fermion (1)

Overlap Dirac operator

$$D(m) = \left(M_0 + \frac{m}{2}\right) + \left(M_0 - \frac{m}{2}\right)\gamma_5 \operatorname{sign}(H_W)$$

Zolotarev's partial fractional approximation

J. van den Eshof et al., Comp. Phys. Comm. 146 (2002) 203.

$${\rm sign}(H_W) = \frac{H_W}{\sqrt{H_W^2}} = H_W \left(p_0 + \sum_{l=1}^N \frac{p_l}{H_W^2 + q_l} \right)$$

- $(H_W^2 + q_l)^{-1}$: determined by Multishift CG simultaneously
- For smaller λ_{min} , larger N is needed for accuracy e.g. for N=10, $O(10^{-7})$ accuracy for $\lambda_{min}=0.05$ and $O(10^{-5})$ for 0.01.
- Subtraction of low modes of H_W
 → sign(λ) (λ < λ_{thrs}) is explicitly determined

Implementation of overlap fermion (2)

□ Nested CG algorithm

- Outer CG for D(m), inner CG for $(H_W^2 + q_l)^{-1}$ (multishift) A.Frommer et al., Int. J. Mod. Phys. C 6 (1995) 627.
- Relaxed CG: *ϵ_{in}* is relaxed as outer iteration proceeds
 N.Cundy et al., Comp. Phys. Comm. 165 (2004) 221.
- Subtraction of low-modes of H_W applicable (safe from $\lambda_{min} \sim 0$)
- Cost is almost unchanged as N

□ 5-dimensional CG

- A. Borici, hep-lat/0402035; R.G.Edwards et al., PoS LAT2005 (2006) 146.
- Making use of Schur decomposition
- Even-odd preconditioning
- Cost increases linearly in N
- Subtraction of low-modes of H_W is not applicable

 \rightarrow difficulty at $\lambda_{min} \sim 0$

Implementation of overlap fermion (3)

Comparison:

($a\simeq 0.12 {
m fm}$, $m\simeq 0.4 m_s$, single conf.)

- Relaxed CG is factor 2 faster than standard CG
- 5D solver is 2-3 times faster than relaxed CG for N = 20
- If $\lambda \simeq 0$ does not appear, 5D solver has advantage

$N_f = 2$ algorithm (1)

Building blocks of accelerating HMC:

• Hasenbusch preconditioning: $S_F = S_{PF1} + S_{PF2}$

M.Hasenbusch, Phys. Lett. B 519 (2001) 177.

 $S_{PF1} = \phi_1^{\dagger} [D(m')^{\dagger} D(m')]^{-1} \phi_1 \quad \text{(preconditioner)}$ $S_{PF2} = \phi_2^{\dagger} \{ D(m') [D(m)^{\dagger} D(m)]^{-1} D(m')^{\dagger} \} \phi_2$

- Multi-time step: $\Delta \tau_{(PF2)} > \Delta \tau_{(PF1)} > \Delta \tau_{(G)} = \Delta \tau_{(E)}$ J.C.Sexton and D.H.Weingarten, Nucl. Phys. B 380 (1992) 665.
- Overlap solver: relaxed CG/5D CG
- Reflection/refraction at λ_{min} = 0 Z.Fodor, S.D.Katz and K.K.Szabo, JHEP0408 (2004) 003.
 – Needs monitoring of λ_{min} and inverting D[†]D twice ⇒ skipped: λ_{min} = 0 is avoided by S_E

$N_f = 2$ algorithm (2)

Most time consuming part: solvers in molecular dynamics Cost in MD is reduced by

- assuming no near-zero mode
- fixed λ_{thrs} , $N \simeq 10 \rightarrow$ adopting 5D solver
- no eigenvalue determination

Error in MD is corrected by Noisy Metropolis: *A.D.Kennedy and J.Kuti, Phys. Rev. Lett.* 54 (1985) 2473. After usual Metropolis, accept U_{new} with $P = \min\{1, e^{-dS}\}$,

$$dS = |W^{-1}[U_{new}]W[U_{old}]\xi|^2 - |\xi|^2$$

where W = D(m)/D'(m),

- D': relaxed overlap operator used in MD
- D: accurate overlap operator

$N_f = 2$ algorithm (3)

Performance on Blue Gene (512-node)

 $a\sim 0.12$ fm, $\mu=0.2$, trajectory length: au=0.5

• HMC-1: With 4D (relaxed CG) solver

m_{ud}	$N_{\tau(PF2)}$	$\frac{\Delta \tau_{(PF2)}}{\Delta \tau_{(PF1)}}$	$\frac{\Delta \tau_{(PF1)}}{\Delta \tau_{(G,E)}}$	$N_{PF1,2}$	P_{acc}	time[min]
0.015	9	4	5	10	0.87	112
0.025	8	4	5	10	0.90	94
0.035	6	5	6	10	0.74	63

• HMC-2: less precise 5D solver in MD + noisy Metropolis \rightarrow factor \sim 2 accelerated

m_{ud}	$N_{\tau(PF2)}$	$\frac{\Delta \tau_{(PF2)}}{\Delta \tau_{(PF1)}}$	$\frac{\Delta \tau_{(PF1)}}{\Delta \tau_{(G,E)}}$	N_{PF1}	$N_{PF2}^{(MD)}$	$N_{PF2}^{(NM)}$	P_{acc}	time[min]
0.015	13	6	8	10	16	10	0.68	52
0.025	10	6	8	10	16	10	0.82	43
0.035	10	6	8	10	16	10	0.87	36

$N_f = 2 + 1$ algorithm (1)

A. Bode et al., hep-lat/9912043 T. DeGrand and S. Schaefer, JHEP 0607 (2006) 020

 $H^2 = D^{\dagger}(m)D(m)$ commutes with γ_5

$$H^{2} = P_{+}H^{2}P_{+} + P_{-}H^{2}P_{-} \equiv Q_{+} + Q_{-}$$

 $\det H^2 = \det Q_+ \cdot \det Q_-$

Eigenvalues of Q+ and Q_- are the same except for zero modes $\downarrow\downarrow$ One of chirality sector realizes odd number of flavor (zero modes give const. contribution)

Topology change can be implemented
 — Not necessary in our case

 $N_f = 2 + 1$ algorithm (2)

Pseudofermion action ($\sigma = 1 \text{ or } -1$):

$$S_{PF1} = \phi_{1\sigma}^{\dagger} Q_{\sigma}^{-1}(m') \phi_{1\sigma}, \qquad S_{PF2} = \phi_{2\sigma}^{\dagger} \left(\frac{Q_{\sigma}(m')}{Q_{\sigma}(m)} \right) \phi_{2\sigma}$$

• Refreshing $\phi_{1\sigma}$ and $\phi_{2\sigma}$ (with Gaussian ξ_{σ})

$$\phi_{1\sigma} = \sqrt{Q_{\sigma}(m')} \cdot \xi_{1\sigma}, \qquad \phi_{2\sigma} = \sqrt{\frac{Q_{\sigma}(m)}{Q_{\sigma}(m')}} \cdot \xi_{2\sigma}.$$

- Polynomial or partial fractional approx.

• Other parts are straightforward

e.g., force:

$$\frac{dS_{PF1}}{d\tau} = \phi_{1\sigma}^{\dagger} P_{\sigma} \left(\frac{dH^2(m')^{-1}}{d\tau}\right) P_{\sigma} \phi_{1\sigma}$$

etc.

 $N_f = 2 + 1$ algorithm (3)

Check: $N_f=2 \text{ vs } N_f=1+1$ $16^3 \times 32 \text{ lattice}, \beta = 2.5, m_q = 0.09$

- Two positive chirality PS-fermions
- HMC-1 (4D solver, w/o noisy Metropolis) — compared with $N_f = 2$, HMC-1
- Initial: $N_f = 2$ thermalized config.

•
$$M_{MD}^{(pf2)} = 4$$
, $R_{MD}^{(pf1)} = 5$, $R_{MD}^{(GE)} = 6$, $l_{trj} = 0.5$, $m' = 0.4$

	trj	plaq	P_{acc}	min/trj(BG 512 node)
Nf=1+1	1500	0.651219(16)	${\sim}0.8$	23
Nf=2	1000	0.651173(21)	0.81	13

- Consistent with $N_f = 2$.
- Increased cost: largely due to refreshment of φ's (Now Zolotarev approx. is used)

$N_f = 2 + 1$ algorithm (4)

Test run:

 $\beta = 2.30, m_{ud} = 0.10, m_s = 0.10, Q = 0$

- $N_f = 2 \oplus$ positive chirality sector
- Other parameters are same as $N_f = 2$
- HMC-1 (4D solver, w/o noisy Metropolis)
- $M_{MD}^{(pf2)} = 5, R_{MD}^{(pf1)} = 5, R_{MD}^{(GE)} = 6, l_{trj} = 0.5, m' = 0.4$
- Thermalization: 300 trjs (very preliminary)

	trj	plaq	P_{acc}	time/trj(BG 512 node)
Nf=2+1	150	0.609724(50)	\sim 0.76	70 min
Nf=2	4600	0.614685(12)	0.85	40 min

$N_f = 2 + 1$ algorithm (5)

Solver convergence:

One flavor part is twice faster than $N_f = 2$

 \rightarrow total cost is \sim 1.5 times

Force hierarchy:

Total forces of 2+1 flavors are similar to $N_f = 2$, 1+1

 $N_f = 2 + 1$ algorithm (6)

Very preliminary result $\beta = 2.30, m_{ud} = m_s = 0.10, Q = 0$

- 300 thermalization trjs.
- 30 configs (5 trj separated)

a is determined by hadronic radius (Sommer scale)

— tendency consistent with $N_f = 2$

Summary/Outlook

JLQCD's dynamical overlap project

 $N_f=2$ is now in productive run at $16^3 \times 32$, $a \simeq 0.12$ fm, $\simeq m_s/6$

- Various observables are being measured
- Effect of fixed topology (simulations at various Q)

We are preparing for $N_f = 2 + 1$ simulations

- Improvement and parameter tuning are in progress
- Main target of the next year
- Larger lattice $(24^3 \times 48)$ is planned