Overlap fermion with topology conserving gauge action

Hidenori Fukaya ^a, Shoji Hashimoto ^{b,c}, Takuya Hirohashi ^d, Hideo Matsufuru ^b, Kenji Ogawa ^c, and Tetsuya Onogi ^a

 ^a Yukawa Institute for Theoretical Physics, Kyoto Univ., Japan
 ^b High Energy Accelerator Research Organization (KEK), Japan
 ^c School of High Energy Accelerator Science, The Graduate Univ. for Advanced Studies (Sokendai), Japan
 ^d Dept. Physics, Kyoto Univ., Japan

> Lattice 2005 25–30 July 2005, Dublin, Ireland

Web-site: http://www.rcnp.osaka-u.ac.jp/~matufuru/

Contents

Eigenvalue distribution of H_W on quenched and dynamical lattices with topology conserving gauge action and overlap fermion.

- Introduction
- Topology conserving gauge action
- Quenched results
- Dynamical results

Introduction

Overlap Dirac operator

$$D_{ov}(m) = \left(1 - \frac{a}{2}\right) D_{ov} + m$$

$$D_{ov} = \frac{1}{\overline{a}} [1 + \gamma_5 \text{sign}(H_W)]$$

$$\overline{a} = a/(1+s), \quad H_W = \gamma_5 [D_W - (1+s)]$$
where D_W is Wilson-Dirac operator
ov satisfies Ginsparg-Wilson relation
— modified exact chiral symmetry is realized

Γ

 ϵ -regime: $m_{\pi}^{-1} \gg L \gg \Lambda^{-1}$

 \rightarrow determination of parameters of chiral Lagrangian

Introduction

If lowest eigenvalue of H_W keeps nonzero value,

- locality of D_{ov} is realized
- topology is conserved
- efficiency of overlap solver, HMC
- \Rightarrow Motivations to explore topology conserving gauge actions

Topology conserving gauge action

Lüscher's admissibility condition

Phys. Lett. B428 (1998) 342, Nucl. Phys. B549 (1999) 295

$$1 - \frac{1}{N_c} \operatorname{ReTr} P_{\mu\nu} < \epsilon$$

- Lower bound of H_W : $H_W^2 > \lambda^2 > 0$ \Rightarrow locality of the overlap operator
- Stability of topological charge

Topology conserving gauge action

Lüscher's proposal of gauge action to realize the adimissibility:

$$S_G = \begin{cases} \frac{1}{g^2} \sum_{x,\mu,\nu} \frac{1 - \operatorname{ReTr}_{P_{\mu\nu}(x)}}{1 - |1 - P_{\mu\nu}|^2 / \epsilon^2} & \text{if admissible} \\ \infty & \text{otherwise} \end{cases}$$

Massive Schwinger model:

- good chiral behavior
- conservation of topological charge

Fukaya and Onogi, Phys. Rev. D68 (2003) 074503, D70(2004) 054508

Topology conserving gauge action

Application to QCD:

Shcheredin et al., hep-lat/0409073, hep-lat/0412017

$$S_G = \begin{cases} \frac{1}{g^2} \sum_{x,\mu,\nu} \frac{S_P(x)}{(1 - S_P(x)/\epsilon)^{\alpha}} & \text{if admissible} \\ \infty & \text{otherwise} \end{cases}$$

where

$$S_P(x) = 1 - \operatorname{ReTr} P_{\mu\nu}(x)$$

and $P_{\mu\nu}(x)$ is plaquette.

In this work, $\alpha = 1$.

With this action, we investigate low-lying eigenvalue distribution of H_W on quenched/dynamical lattices.

Generation of configurations:
Hybrid Monte Carlo algorithm
δt =0.01, length of trajectory is 0.2
Admissibility condition: 1/ε =0, 2/3, 1

Admissibility relation is monitored durning update — For $1/\epsilon = 2/3$ and 1, no violation of admissibility observed

Determination of eigenmodes of H_W : Implicitly restarted Arnoldi method ARPACK package: http://www.caam.rice.edu/software/ARPACK/

 16^4 lattice, $a^{-1} \simeq 2.5 \text{ GeV}$

- A: $\beta = 6.13$, $1/\epsilon = 0$ (plaquette)
- B: $\beta = 2.70$, $1/\epsilon = 2/3$
- C: $\beta = 1.42$, $1/\epsilon = 1$

 20^4 lattice

- $1/\epsilon = 0$: β =6.0 (a^{-1} =2.1GeV)
- $1/\epsilon = 2/3$: β =2.7 (a^{-1} =2.6GeV), β =2.55 (a^{-1} =2.1GeV)
- $1/\epsilon = 1$: $\beta = 1.42$ ($a^{-1} = 2.5 \text{GeV}$), $\beta = 1.3$ ($a^{-1} = 2.1 \text{GeV}$)

Conclusion:

- With topology conserving action,
- lowest eigenvalue tends to be larger than the plaquette action.

- Overlap fermion action
 - Zolotarev rational approx. ($N_{poly} = 20$) van den Eshof et al., Comput. Phys. Commun. 146 (2002) 203
- Eigenmodes of H_W
 - implicitly restarted Lanczos method
- Hybrid Monte Carlo algorithm
 - $^\circ\;$ reflection/refraction at $\lambda=0$

Fodor, Katz and Szabó, JHEP 08 (2004) 003

Parameters

- m = 0.20, 1 + s = 1.6.
- $\delta t = 0.02, N_{MD} = 50.$
- 200 trj. for thermalization
- 500 trj. for measurement

size	β	$1/\epsilon$	reflection/trj	acceptance
4^4	5.40	0	0.34	0.97
	5.50	0	0.53	0.94
4^{4}	0.70	1	0.63	0.82
	0.80	1	0.18	0.89

$$\beta = 5.50, 1/\epsilon = 0$$

 $\beta = 0.80, 1/\epsilon = 1$

Results on 4^4 lattices may imply: with topology conserving gauge action, lowest eigenvalue tends to be larger than the plaquette action. (comparison at same *a* is needed.)

Outlook:

- Larger lattice sizes
- Smaller quark masses
- Determination of lattice spacings
- Comparison at the same values of *a*
- Improvement of HMC algorithm toward practical applications