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Introduction

Our motivation:
high precision computation of hadronic matrix elements for
flavor physics

Recent experimental development of in heavy flavor physics
such as B factories, Charm factory
→ need precise theoretical prediction to a few percent level

Matrix elements:
◦ decay constants
◦ bag parameters
◦ form factors
◦ quark masses
◦ light-cone wave functions

etc.
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Our approach: why anisotropic lattice?

Problem in lattice QCD calculations:
for heavy quarks (c and b), large O(amQ) error

For precision computation of heavy-light matrix elements,
we need a framework for heavy quark which has

(i) continuum limit
— to remove lattice artifact

(ii) systematic improvement
such as nonperturbative renormalization technique
(for mq ≃ 0)

(iii) modest size of computation
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Our approach: why anisotropic lattice?

Previous approaches satisfy not all of them:

a). Effective theories (NRQCD, etc) — (i)×
Thacker and Lepage, Phys. Rev. D 43 (1991) 196.

b). Relativistic framework — (iii)×

c). Fermilab approach (with/without mass dependent tuning)
— (ii)×
El-Khadra et al., Phys. Rev. D 55 (1997) 3933.
Sroczynski, et al., Nucl. Phys. B (PS) 83 (2000) 971.

So far, systematic uncertainty ∼ 10%

To achieve calculations with ∼2% precision, we need yet
another approach which satisfies above conditions (i)–(iii).

⇒ our proposal: Anisotropic lattice
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Our approach

Anisotropic lattice: aτ < aσ ⇒ Anisotropy ξ = aσ/aτ

Quark action: O(a) improved, along with Fermilab approach
� bare anisotropy parameter γF :

in general, to be tuned mass dependently
e.g., using meson dispersion relation

◦ Continuum limit – OK
◦ Modest computational cost – OK
◦ Systematic improvement ?

If quark mass is sufficiently less than a−1,
tuned parameters for massless quark are applicable.
⇒ nonperturbative renormalization technique

Lüscher et al., Nucl.Phys. B 491 (1997) 323.
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Our approach

Our expectation:
For mQ ≪ a−1

τ , (not necessarily mQ ≪ a−1
σ ),

mass dependences of parameters in the action are so small
that the tuned parameters for massless quark are also
applicable in such a quark mass region.

— Then, systematic improvement is possible.
(performed at mq ≃ 0)

⇒ To be justified numerically, and in perturbation theory.

◦ Tree level: OK
◦ O(a0) improved version: OK (2% accuracy)
◦ High precision: in progress
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Present status

� One-loop perturbative calculation:
Harada et al., Phys. Rev. D 64 (2001) 074501

Renormalization factors of heavy-light bilinears and
quark rest mass at mQaσ ∼ 1, mQ ≪ a−1

τ

⇒ Well approximated with linear form in mQaτ

— quark mass dependence can be controlled

� Numerical simulation:
In quenched approximation, tadpole improved cE and cB

• Mass dependent tuning
Matsufuru, Onogi and Umeda, Phys. Rev. D 64 (2001) 114503

γF is tuned with meson dispersion relation
Quark mass dependence is small for mqaτ ≪ 1
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Present status (cont.)

• Test of relativity relation
Harada et al., Phys. Rev. D 66 (2002) 014509

Heavy-light meson dispersion relation for γF = γF (mq = 0)

Relativity relation well holds for mqaτ ≪ 1 (while mqaσ ∼ 1)

• Application to decay constant
Matsufuru, Harada, Onogi and Sugita, hep-lat/0209090

– Around charm quark mass, with O(10%) accuracy
– fDs

consistent with precision computation
by ALPHA Collab.

– β dependence of fDs
/fK very small.

– Result also consistent with previous works

— Encouraging results for further development
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Toward high precision computations

Calibrations of parameters to 0.2% level of accuracy
in quenched approximation

⇒ Applicable to a few percent calculation of matrix elements

� Gauge field:
• Precise computation of static quark potential
• Renormalized anisotropy defined with r0
⇒ O(0.2%) calibration is possible

� Quark field:
γF , cE, cB, and cA (for axial current) in massless limit.

— γF must be tuned precisely (to O(0.2%) level)
Combine two procedures:
• Nonperturbative renormalization technique
• Spectroscopy in fine and coarse directions

— Numerical simulation is in progress
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Calibration of gauge field

Previous result for gauge field:
Klassen’s work with 1% level of statistical error.

T.R.Klassen, Nucl. Phys. B 533 (1998) 557.
— For present purpose, this accuracy is not sufficient.

Renormalized anisotropy ξG ← static potential
We define ξG through hadronic radius r0

r0: r20F (r0) = 1.65 (F (r): force)
Sommer, Nucl. Phys. B411 (1994) 839

• Precise computation possible
• Good scaling behavior (if lattice scale is set by r0)

Calibration scale is unambiguous.
Continuum limit in terms of scale set by r0
→ systematic error in γG disappers as a→ 0
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Calibration of gauge field

Precise computation of static potential:

• Lüscher-Weisz noise reduction technique
Lüscher and Weisz, JHEP 0109 (2001) 010.

– accurate computation is possible.
– rather large memory is required.

• Smearing technique in anisotropic plane
– standard technique on isotropic lattices
– convenient for large lattices

Target anisotropy: ξ = 4

β = 5.7 – 6.3 (a−1
s = 1 – 3 GeV)

At each β, several input γG → γ∗G s.t. ξG(γ∗G) = ξ

where ξG = r
(fine)
0 /r

(coarse)
0
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Calibration of gauge field

Result at β = 5.75
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β=5.75

γ∗ = 3.1396(76) (0.24% accuracy)
— almost sufficient (further improvement is easy)
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Calibration of gauge field

Result at β = 6.00
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β=6.00

γ∗ = 3.227(25) (0.8% accuracy)
— not sufficient, can be improved by statistics
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Calibration of gauge field

Results (preliminary)
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Calibration for ξ=4

More accuracy is needed in wide range of β (work in progress).

global fit → γ∗G with 0.2% level uncertainty
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Calibration of quark field

Quark action: O(a) improved Wilson action

SF =
∑

x,y

ψ̄(x)K(x, y)ψ(y)

K(x, y) = δx,y − κτ

[

(1− γ4)U4(x)δx+4̂,y + (1 + γ4)U
†
4 (x− 4̂)δx−4̂,y

]

−κσ

∑

i

[

(r − γi)Ui(x)δx+î,y + (r + γi)U
†
i (x− î)δx−î,y

]

−κσcE
∑

i

σ4iF4i(x)δx,y + rκσcB
∑

i>j

σijFij(x)δx,y

γF = κτ/κσ : bare anisotropy
γF , cE and cB : to be tuned nonperturbatively
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Calibration of quark field

Five parameters (γF , cE, cB, cA, κc) should be determined.

Calibration steps:

(1) Schrödinger functional method
⇒ tuning of cE, cB

(2) Spectrum in coarse / fine directions on lattices of T ,L ∼ 2 fm
Physical isotropy conditions for mPS , mV ⇒ γF , (cB)

(3) Schrödinger functional method
⇒ determine cA, κc

(4) Check of systematic errors
Light hadron spectrum and dispersion relation
Taking the continuum limit
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Calibration of quark field

Determination of cE:

Nonperturbative improvement technique
Lüscher et al., Nucl. Phys. B478 (1996) 365
Lüscher et al., Nucl. Phys. B491 (1997) 323

Schrödinger functional method:
implementation for anisotropic lattice is straightforward.

(t-direction set to the fine direction)

PCAC relation up to O(a2)→ improvement of cE

Unrenormalized quark mass
m = 1

2 [12(∂∗0 + ∂0)fA(t) + cAat∂
∗

0∂0fP (t)]/fP (t)

Improvement condition:
m does not depend on kinematical parameters such as
boundary gauge field.
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Calibration of quark field

Result at high β
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• NP improved cE is close to 1-loop mean-field value, cE=1.13.
• ∆M is almost independent of cB
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Calibration of quark field

Result at β = 6.10
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• NP improved cE is larger than tadpole tree value, cE = 1.26.
• ∆M is not sensitive to cB
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Calibration of quark field

Determination of γF :
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β = 5.75, 122
× 24× 96, a−1

s = 1.1 GeV, 136 confs.

γF is determined from meson masses in fine/coarse directions
• precision of γF is still not sufficient
• consistent with γF from dispersion relation

Anisotropic lattice with nonperturbative accuracy – p.21



Calibration of quark field

Determination of cB:

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9
CB

3.4

3.6

3.8

4

4.2

4.4

4.6

an
is

ot
ro

py
 fr

om
 m

as
s 

sp
lit

tin
g 

ra
tio

data

In principle, cB can be determined by mass splitting in
fine/coarse directions.

In practice, signal-to-noise ratio is too large.

We need other procedures:
◦ Schrödinger functional with boundaries in coarse direction
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Summary

We are developing anisotropic lattices for precise computation of
heavy-light matrix elements.

Results so far are encouraging for further development.

Now calibration of gauge and quark fields are in progress:

◦ high precision calibration for gluonic anisotropy
◦ nonperturbative determination of cE

while we still need improved procedures for
◦ accurate determination of γF

◦ determination of cB
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Outlook

We also need to demonstrate:
• the parameters at mq = 0 suffices for heavy quarks
• all systematic errors can be controlled as a→ 0

and to develop
• efficient procedures for full QCD
• matching with isotropic lattice

in addition to application to various heavy-light matrix elements.
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