Anisotropic lattice with nonperturbative accuracy

Hideo Matsufuru

High Energy Accelerator Research Organization (KEK), Japan Hidenori Fukaya, Tetsuya Onogi, Takashi Umeda (Yukawa Institute for Theoretical Physics, Kyoto Univ.) Masanori Okawa (Dept. Physics, Hiroshima Univ.)

Web-site: http://www.rcnp.osaka-u.ac.jp/~matufuru/

Lattice 2004 21–26 June 2004, FNAL, US

Contents

Anisotropic lattice for heavy quark physics

- Introduction
 - motivation, our approach, present status
- Calibration of gauge field
- Calibration of quark field
- Summary and outlook

Introduction

Our motivation: high precision computation of hadronic matrix elements for flavor physics

Recent experimental development of in heavy flavor physics such as B factories, Charm factory \rightarrow need precise theoretical prediction to a few percent level

Matrix elements:

- decay constants
- bag parameters
- \circ form factors
- quark masses
- ∘ light-cone wave functions

etc.

Our approach: why anisotropic lattice?

Problem in lattice QCD calculations: for heavy quarks (c and b), large $O(am_Q)$ error

For precision computation of heavy-light matrix elements, we need a framework for heavy quark which has

- (i) continuum limit
 - to remove lattice artifact
- (ii) systematic improvement
 - such as nonperturbative renormalization technique (for $m_q \simeq 0$)
- (iii) modest size of computation

Our approach: why anisotropic lattice?

Previous approaches satisfy not all of them:

a). Effective theories (NRQCD, etc) — (i) \times

Thacker and Lepage, Phys. Rev. D 43 (1991) 196.

- b). Relativistic framework (iii) \times
- c). Fermilab approach (with/without mass dependent tuning) — (ii)× El-Khadra et al., Phys. Rev. D 55 (1997) 3933. Sroczynski, et al., Nucl. Phys. B (PS) 83 (2000) 971.

So far, systematic uncertainty $\sim 10\%$

To achieve calculations with \sim 2% precision, we need yet another approach which satisfies above conditions (i)–(iii). \Rightarrow our proposal: Anisotropic lattice

Our approach

Anisotropic lattice: $a_{\tau} < a_{\sigma} \Rightarrow$ Anisotropy $\xi = a_{\sigma}/a_{\tau}$

Quark action: O(a) improved, along with Fermilab approach \Box bare anisotropy parameter γ_F : in general, to be tuned mass dependently e.g., using meson dispersion relation

- \circ Continuum limit OK
- Modest computational cost OK
- Systematic improvement ?
 - If quark mass is sufficiently less than a^{-1} ,
 - tuned parameters for massless quark are applicable.
 - \Rightarrow nonperturbative renormalization technique

Lüscher et al., Nucl. Phys. B 491 (1997) 323.

Our approach

Our expectation:

For $m_Q \ll a_{\tau}^{-1}$, (not necessarily $m_Q \ll a_{\sigma}^{-1}$), mass dependences of parameters in the action are so small that the tuned parameters for massless quark are also applicable in such a quark mass region.

— Then, systematic improvement is possible. (performed at $m_q \simeq 0$)

- $\Rightarrow\,$ To be justified numerically, and in perturbation theory.
 - Tree level: OK
 - $\circ O(a^0)$ improved version: *OK* (2% accuracy)
 - High precision: in progress

Present status

□ One-loop perturbative calculation: *Harada et al., Phys. Rev. D 64 (2001) 074501* Renormalization factors of heavy-light bilinears and quark rest mass at $m_Q a_\sigma \sim 1$, $m_Q \ll a_\tau^{-1}$ ⇒ Well approximated with linear form in $m_Q a_\tau$ — quark mass dependence can be controlled

□ Numerical simulation:

In quenched approximation, tadpole improved c_E and c_B

Mass dependent tuning

Matsufuru, Onogi and Umeda, Phys. Rev. D 64 (2001) 114503

 γ_F is tuned with meson dispersion relation Quark mass dependence is small for $m_q a_\tau \ll 1$

Present status (cont.)

• Test of relativity relation

Harada et al., Phys. Rev. D 66 (2002) 014509

Heavy-light meson dispersion relation for $\gamma_F = \gamma_F(m_q = 0)$ Relativity relation well holds for $m_q a_\tau \ll 1$ (while $m_q a_\sigma \sim 1$)

• Application to decay constant

Matsufuru, Harada, Onogi and Sugita, hep-lat/0209090

- Around charm quark mass, with O(10%) accuracy
- $-f_{D_s}$ consistent with precision computation by ALPHA Collab.
- β dependence of f_{D_s}/f_K very small.
- Result also consistent with previous works
- Encouraging results for further development

Toward high precision computations

- Calibrations of parameters to 0.2% level of accuracy in quenched approximation
- \Rightarrow Applicable to a few percent calculation of matrix elements
- □ Gauge field:
 - Precise computation of static quark potential
 - Renormalized anisotropy defined with r_0
 - $\Rightarrow O(0.2\%)$ calibration is possible
- □ Quark field:
 - γ_F , c_E , c_B , and c_A (for axial current) in massless limit.
 - γ_F must be tuned precisely (to O(0.2%) level) Combine two procedures:
 - Nonperturbative renormalization technique
 - Spectroscopy in fine and coarse directions
- Numerical simulation is in progress

Previous result for gauge field:
Klassen's work with 1% level of statistical error. *T.R.Klassen, Nucl. Phys. B 533 (1998) 557.*— For present purpose, this accuracy is not sufficient.

Renormalized anisotropy $\xi_G \leftarrow$ static potential We define ξ_G through hadronic radius r_0

> $r_0: r_0^2 F(r_0) = 1.65$ (F(r): force) Sommer, Nucl. Phys. B411 (1994) 839

- Precise computation possible
- Good scaling behavior (if lattice scale is set by r_0)

Calibration scale is unambiguous. Continuum limit in terms of scale set by r_0

 \rightarrow systematic error in γ_G disappers as $a \rightarrow 0$

Precise computation of static potential:

• Lüscher-Weisz noise reduction technique

Lüscher and Weisz, JHEP 0109 (2001) 010.

- accurate computation is possible.
- rather large memory is required.
- Smearing technique in anisotropic plane
 - standard technique on isotropic lattices
 - convenient for large lattices

Target anisotropy: $\xi = 4$ $\beta = 5.7 - 6.3 \quad (a_s^{-1} = 1 - 3 \text{ GeV})$ At each β , several input $\gamma_G \rightarrow \gamma_G^*$ s.t. $\xi_G(\gamma_G^*) = \xi$ where $\xi_G = r_0^{(fine)} / r_0^{(coarse)}$

Result at $\beta = 5.75$

 $\gamma^* = 3.1396(76)$ (0.24% accuracy) — almost sufficient (further improvement is easy)

Result at $\beta = 6.00$

 $\gamma^* = 3.227(25)$ (0.8% accuracy) — not sufficient, can be improved by statistics

Results (preliminary)

More accuracy is needed in wide range of β (work in progress). global fit $\rightarrow \gamma_G^*$ with 0.2% level uncertainty

Quark action: O(a) improved Wilson action

$$S_F = \sum_{x,y} \bar{\psi}(x) K(x,y) \psi(y)$$

$$K(x,y) = \delta_{x,y} - \kappa_{\tau} \left[(1 - \gamma_4) U_4(x) \delta_{x+\hat{4},y} + (1 + \gamma_4) U_4^{\dagger}(x - \hat{4}) \delta_{x-\hat{4},y} \right]$$
$$-\kappa_{\sigma} \sum_i \left[(r - \gamma_i) U_i(x) \delta_{x+\hat{i},y} + (r + \gamma_i) U_i^{\dagger}(x - \hat{i}) \delta_{x-\hat{i},y} \right]$$
$$-\kappa_{\sigma} c_E \sum_i \sigma_{4i} F_{4i}(x) \delta_{x,y} + r \kappa_{\sigma} c_B \sum_{i>j} \sigma_{ij} F_{ij}(x) \delta_{x,y}$$

 $\gamma_F = \kappa_\tau / \kappa_\sigma$: bare anisotropy γ_F , c_E and c_B : to be tuned nonperturbatively

Five parameters (γ_F , c_E , c_B , c_A , κ_c) should be determined.

Calibration steps:

(1) Schrödinger functional method

 \Rightarrow tuning of c_E , c_B

(2) Spectrum in coarse / fine directions on lattices of $T, L \sim$ 2 fm Physical isotropy conditions for $m_{PS}, m_V \Rightarrow \gamma_F$, (c_B)

(3) Schrödinger functional method

 \Rightarrow determine c_A , κ_c

(4) Check of systematic errors

Light hadron spectrum and dispersion relation Taking the continuum limit

Determination of c_E :

Nonperturbative improvement technique

Lüscher et al., Nucl. Phys. B478 (1996) 365 Lüscher et al., Nucl. Phys. B491 (1997) 323

Schrödinger functional method: implementation for anisotropic lattice is straightforward. (*t*-direction set to the fine direction) PCAC relation up to $O(a^2) \rightarrow$ improvement of c_E

Unrenormalized quark mass $m = \frac{1}{2} [\frac{1}{2} (\partial_0^* + \partial_0) f_A(t) + c_A a_t \partial_0^* \partial_0 f_P(t)] / f_P(t)$ Improvement condition: m does not depend on kinematical parameters such as boundary gauge field.

 $\beta = 9.5, 8^3 \times 64, \xi = 4$ (gluonic anisotropy from Klassen's work)

- NP improved c_E is close to 1-loop mean-field value, c_E =1.13.
- ΔM is almost independent of c_B

aniso1 004 Result at $\beta = 6.10$ 0.001 β**=**6.10 ● C_B=1.9105 ▲ C_□=2.3105 lattice-G 1500conf. 0.0005 0 ΔM^{free} (L/a=8)=6.9x10⁻⁶ -0.0005 L 1.2 1.4 1.6 1.8 2.2 2 2.4 C_{E}

 $\beta = 6.10, 8^3 \times 64, \xi = 4$ ($a_s^{-1} = 2.0$ GeV) (γ_G by Klassen)

- NP improved c_E is larger than tadpole tree value, $c_E = 1.26$.
- ΔM is not sensitive to c_B

Determination of γ_F :

 $\beta = 5.75, 12^2 \times 24 \times 96, a_s^{-1} = 1.1$ GeV, 136 confs.

 γ_F is determined from meson masses in fine/coarse directions

- precision of γ_F is still not sufficient
- consistent with γ_F from dispersion relation

Determination of c_B :

In principle, c_B can be determined by mass splitting in fine/coarse directions.

In practice, signal-to-noise ratio is too large.

We need other procedures:

Schrödinger functional with boundaries in coarse direction

Summary

We are developing anisotropic lattices for precise computation of heavy-light matrix elements.

Results so far are encouraging for further development.

Now calibration of gauge and quark fields are in progress:

- high precision calibration for gluonic anisotropy
- \circ nonperturbative determination of c_E
- while we still need improved procedures for
 - \circ accurate determination of γ_F
 - \circ determination of c_B

Outlook

We also need to demonstrate:

- the parameters at $m_q = 0$ suffices for heavy quarks
- all systematic errors can be controlled as $a \rightarrow 0$

and to develop

- efficient procedures for full QCD
- matching with isotropic lattice

in addition to application to various heavy-light matrix elements.