Accurate determination of gauge and quark actions on anisotropic lattices

Hideo Matsufuru

High Energy Accelerator Research Organization (KEK) Hidenori Fukaya, Tetsuya Onogi, Takashi Umeda Yukawa Institute for Theoretical Physics, Kyoto Univ. Masanori Okawa Dept. Physics, Hiroshima Univ.

Web-site: http://www.rcnp.osaka-u.ac.jp/~matufuru/

JPS meeting autumn 2004 30 September 2004, Kochi

Introduction

Anisotropic lattice: $a_{\tau} < a_{\sigma} \Rightarrow$ Anisotropy $\xi = a_{\sigma}/a_{\tau}$ Useful in various subjects:

- Heavy quark physics (our main purpose) a relativistic framework which enables
 - continuum limit
 - systematic improvement
 - \circ modest size of computation
- Finite temperature physics
 - better resolution in Euclidean temporal direction
 - \rightarrow larger number of Matsubara frequency
- Correlators which rapidly grows statistical noises
 - glueballs, exotics, excited states, etc.
 - easy to follow changes in t

Introduction

Disadvantage:

- Needs nonperturbative calibration (tuning of parameters)
- Systematic errors due to anisotropy must be controlled.

Present statistial accuracy: O(2%) in parameters \rightarrow O(10%) accuracy in spectrum and matrix elements — not sufficient for precision computation

Our goal: 0.2% level of accuracy for parameters \Rightarrow a few percent calculation of matrix elements

Present stage: in quenched approximation — studies of calibration procedure Target anisotropy: $\xi = 4$, $\beta = 5.7 - 6.3$ ($a_s^{-1} = 1 - 3$ GeV)

Previous work by Klassen: 1% level of statistical error.
T.R.Klassen, Nucl. Phys. B 533 (1998) 557. — For present purpose, this accuracy is not sufficient.

Renormalized anisotropy $\xi_G \leftarrow$ static potential We define ξ_G through hadronic radius r_0

 r_0 : $r_0^2 F(r_0) = 1.65$ (F(r): force)

Sommer, Nucl. Phys. B411 (1994) 839

• Precise computation possible

- Lüscher-Weisz noise reduction technique

Lüscher and Weisz, JHEP 0109 (2001) 010.

 \circ Good scaling behavior (if lattice scale is set by r_0)

 \circ Continuum limit in terms of scale set by r_0

 \rightarrow systematic error in γ_G disappears as $a \rightarrow 0$

Result at $\beta = 5.75$

 $\gamma^* = 3.1406(55)$ (0.2% accuracy)

Result at $\beta = 6.0$

 $\gamma^* = 3.2012(66)$ (0.2% accuracy)

Results (preliminary)

More accuracy is needed for high β region (in progress). Global fit $\rightarrow \gamma_G^*$ with 0.2% level uncertainty Estimate of systematic errors

Quark action: O(a) improved Wilson action

$$S_F = \sum_{x,y} \bar{\psi}(x) K(x,y) \psi(y)$$

$$K(x,y) = \delta_{x,y} - \kappa_{\tau} \left[(1 - \gamma_4) U_4(x) \delta_{x+\hat{4},y} + (1 + \gamma_4) U_4^{\dagger}(x - \hat{4}) \delta_{x-\hat{4},y} \right]$$
$$-\kappa_{\sigma} \sum_i \left[(r - \gamma_i) U_i(x) \delta_{x+\hat{i},y} + (r + \gamma_i) U_i^{\dagger}(x - \hat{i}) \delta_{x-\hat{i},y} \right]$$
$$-\kappa_{\sigma} c_E \sum_i \sigma_{4i} F_{4i}(x) \delta_{x,y} + r \kappa_{\sigma} c_B \sum_{i>j} \sigma_{ij} F_{ij}(x) \delta_{x,y}$$

 $\gamma_F = \kappa_\tau / \kappa_\sigma$: bare anisotropy γ_F , c_E and c_B : to be tuned nonperturbatively

 γ_F , c_E , c_B , κ_c , and c_A (for axial current) in massless limit. — γ_F must be tuned most precisely (to O(0.2%) level)

Applied techniques:

Nonperturbative renormalization technique

Lüscher et al., Nucl. Phys. B478 (1996) 365, B491 (1997) 323

- Spectroscopy in fine and coarse directions
- (1) Schrödinger functional method \Rightarrow tuning of c_E , c_B
- (2) Spectrum in coarse/fine directions on lattices of $T, L \sim 2$ fm Physical isotropy conditions for $m_{PS}, m_V \Rightarrow \gamma_F, (c_B)$
- (3) Schrödinger functional method $\Rightarrow c_A$, κ_c
- (4) Check of systematic errors

Light hadron spectrum and dispersion relation Taking the continuum limit

Result at $\beta = 6.10$ aniso1 004 0.001 $8^3 \times 64, \xi = 4$ ● C_B=1.9105 β**=**6.10 ▲ C_□=2.3105 lattice-G (γ_G by Klassen) 1500conf. $a_s^{-1} = 2.0 \text{ GeV}$ 0.0005 0 $\Delta M^{free}(L/a=8)=6.9 \times 10^{-6}$ -0.0005 1.2 2.2 1.4 1.6 1.8 2 C_F

Quark mass defined by PCAC should not depend on kinematical parameters up to $O(a^2) \rightarrow$ improvement of c_E

- NP improved c_E is larger than tadpole tree value, $c_E = 1.26$.
- ΔM is not sensitive to c_B

2.4

Determination of γ_F :

 $\beta = 5.75, 12^2 \times 24 \times 96, a_s^{-1} = 1.1$ GeV, 136 confs.

 γ_F is determined from meson masses in fine/coarse directions

- precision of γ_F is still not sufficient
- consistent with γ_F from dispersion relation

Summary and outlook

We are developing calibration procedures of anisotropic lattices for precise computation of heavy-light matrix elements.

In quenched approximation,

- gauge field is calibrated with sufficient precision.
- quark field is now under investigation.

 \circ accurate determination of γ_F

 \circ determination of c_B

Outlook:

- heavy quark mass region
- \circ systematic errors controlled as $a \rightarrow 0$
- efficient procedures for full QCD
- matching with isotropic lattice
- applications to various heavy-light matrix elements.