Numerical study of staggered fermion on anisotropic lattices

Kouji Nomura (Dept. Phys. Hiroshima Univ.) Takashi Umeda (YITP, Kyoto Univ.) Hideo Matsufuru (YITP, Kyoto Univ.)

July 15-19 2003, Tsukuba Japan Lattice 2003

Contents:

Introduction Form of action Tuning of anisotropy parameters Quenched lattice simulation $N_f = 2$ full QCD simulation Conclusion and outlook

Introduction(1)

Anisotropic lattice:

Fine resolution in temporal direction $a_{\tau} < a_{\sigma}$

Advantages

□ Large number of d.o.f. in *t* direction ⇒ Large number of Matsubara frequencies * Finite temperature

Equation of state

cf. Y.Namekawa et al., Phys. Rev. D64 (2001) 074507

Analysis of correlation functions

cf. QCD-TARO Collaboration, Phys. Rev. D63 (2001) 054501

cf. T.Umeda, K.Nomura, H.Matsufuru, hep-lat/0211003

\Box Large cutoff in t direction

* Heavy quark systems

cf. J.Harada et al., Phys. Rev. D64 (2001) 074501

Easy to follow the change of correlators * Glueball spectrum

cf. C.J.Morningstar et al., Phys. Rev. D60 (1999) 034509

cf. N.Ishii et al., Phys. Rev. D66 (2002) 014507

* Negative parity baryon spectrum

cf. Y.Nemoto et al., hep-lat/0302013

Disadvantages

• Need to tune anisotropy parameters nonperturbatively ($\xi \equiv a_{\sigma}/a_{\tau}$)

Observable suffer from calibration uncertainties. \implies Must be tuned with high precision

We investigate which calibration procedure provides good precision and good scaling behavior.

Our goal is to tune anisotropy parameters within 1% statistical error on dynamical lattices.

Target anisotropy: $\xi = 4$

Form of action

\Box Wilson gauge + staggered fermion actions

Previous work (
$$\gamma_G = \gamma_F$$
)

L.Levkova et al., Nucl.Phys.Proc.Suppl.106 (2002)218 \implies Precision is not enough

Gauge sector:

$$S_G = \beta \sum_{x} \left[\sum_{i < j}^{3} \frac{1}{\gamma_G} (1 - \frac{1}{3} \operatorname{Re} \operatorname{tr} W_{ij}(x)) + \sum_{i}^{3} \gamma_G (1 - \frac{1}{3} \operatorname{Re} \operatorname{tr} W_{i4}(x)) \right]$$

 γ_G : bare gauge anisotropy parameter

Quark sector:

$$S_F = \sum_{x,y} \bar{\chi}(x) K(x,y) \chi(y)$$

$$K(x,y) = \delta_{x,y} - \gamma_F \kappa_\sigma \eta_{x4} \left[U_4(x) \delta_{x,y-\hat{4}} - U_4^{\dagger}(x-\hat{4}) \delta_{x,y+\hat{4}} \right]$$

$$-\kappa_\sigma \sum_i \eta_{x\mu} \left[U_i(x) \delta_{x,y-\hat{i}} - U_i^{\dagger}(x-\hat{i}) \delta_{x,y+\hat{i}} \right]$$

 $\kappa_{\sigma} = 1/2m_0$

 γ_F : bare fermionic anisotropy parameter m_0 : bare quark mass (in spacial lattice units)

Tuning of anisotropy parameters (1)

In a simulation on the anisotropic lattice, we need to find $\gamma_G = \gamma_G^*$ and $\gamma_F = \gamma_F^*$ which satisfy

$$\begin{split} \xi_G(\gamma_G^*,\gamma_F^*) &= \xi_F(\gamma_G^*,\gamma_F^*) = \xi \\ & \text{ for each } (\beta,m_0). \end{split}$$

Renormalized anisotropies

- ξ_G : defined with gauge observable
- ξ_F : defined with fermion observable

 ξ_G, ξ_F must be determined in good accuracy.

 $\begin{tabular}{ll} \square In quenched simulation $$ One can first tune $$ γ_G independently of $$\gamma_F$. $$ \end{tabular}$

 \Box In dynamical simulation We have to tune γ_G and γ_F simultaneously. Tuning of anisotropy parameters (2)

We adopt following definitions of ξ_G and ξ_F

 $\Box \xi_G: \text{ defined with hadronic radius } r_0 \\\Rightarrow \text{Good scaling behavior}$

Precise static potentials in x and t(fine) directions

- Quench: Lüscher-Weisz noise reduction technique cf. Lüscher and Weisz JHEP 0109 (2001) 010
- Dynamical: smearing technique in (x, t) plane

$$\Rightarrow r_0 : r_0^2 F(r_0) = 1.65 \Rightarrow \xi_G = r_0^{(t)} / r_0^{(x)}$$

 $\Box \ \xi_F: \text{ defined with ratio of meson masses} \\ \text{ in } x \text{ and } t \text{ directions } \xi_F = m_h^{(z)}/m_h^{(t)}$

Less statistical error

Dispersion relation: $E^2(\vec{p}) = m^2 + \vec{p}^2/\xi_F^2$

- used to check the systematic uncertainties

Quenched lattice simulation

 \Box Gauge parameters ($\xi = 4$)

β	γ_{G}	size	a_{σ}^{-1} (GeV)	N _{conf}
5.75	3.136	$12^2 \times 24 \times 96$ (fine)	1.100(6)	224

 γ_G determined with 0.3% error from hadronic radius r_0

□ Quark parameters

 $m_0=0.01\sim0.5~(m_{PS}/m_V=0.33\sim0.90)$ input γ_F : 2 ~ 4 points \Rightarrow interpolation to γ_F^*

□ Simulation result

• Need to compare with free quark analysis

• Need to compare with result of dispersion relation

$N_f = 2$ full QCD simulation

Lattice: $10^2 \times 20 \times 80$ (fine), $\xi = 4$, $N_f = 2$ $\beta = 5.3 \sim 5.45$ $(a_{\sigma}^{-1} = 0.69 \sim 0.85 \text{ GeV})$ Bare quark mass: $m_0 = 0.1 \ (m_{PS}/m_V \sim 0.6)$ N_{conf} : 300 ~ 600 trajectories with Hybrid R algorithm

Determination of anisotropy parameters (γ_G^*, γ_F^*) : $4 \sim 6$ points of input (γ_G, γ_F) for each (β, m_0) tuning to $\Rightarrow \xi = 4$ We suppose the following linear relations $\xi_G = a_0 + a_1(\gamma_G - \gamma_G^*) + a_2(\gamma_F - \gamma_F^*)$ $\xi_F = b_0 + b_1(\gamma_G - \gamma_G^*) + b_2(\gamma_F - \gamma_F^*)$ χ^2 fitting $\Rightarrow (\gamma_G^*, \gamma_F^*)$

 $\Box \ \beta = 5.3 \text{ result}$

 $\begin{bmatrix} a_0, a_1, a_2 \end{bmatrix} = \begin{bmatrix} 4.000(24), 0.702(92), 0.075(92) \end{bmatrix}$ $\begin{bmatrix} b_0, b_1, b_2 \end{bmatrix} = \begin{bmatrix} 4.000(28), 0.220(08), 1.225(08) \end{bmatrix}$

 $\gamma_G^* = 2.885(35), \quad \gamma_F^* = 2.955(31)$

- γ_F has small influence on ξ_G
- γ_G has small influence on ξ_F
- \bullet Errors of γ_G and γ_F are about 1 %

<u>Conclusion</u>

- We carried out the quenched and full QCD simulations on the anisotropic lattices with Wilson gauge + staggered fermion action
- * Calibration is carried out using gauge sector: hadronic radius r_0 quark sector: ratio of masses in x and t directions
 - Simulation result
 - –We can perform calibration within 1 % error on both quenched and dynamical lattice.
- \Box Outlook
 - \bullet Tuning in wide range of β and m_0
 - Comparison with free quark analysis
 - Comparison with dispersion relation
 - Spectroscopy on anisotropic lattices
 - Application to finite temperature