Anisotropic lattices for precision computations in heavy flavor physics

H. Matsufuru¹, M. Okawa², T. Onogi¹, and T. Umeda¹

¹Yukawa Institute for Theoretical Physics, Kyoto University ²Department of Physics, Hiroshima University

> Lattice 2003 15–19 July 2003, Tsukuba, Japan

Contents:

 \Box Introduction

- \Box Anisotropic lattice QCD
- \Box 1st stage results (to $O(a^0)$ level)
- \Box 2nd stage: high precision calibration
- \Box Summary and outlook

Refs.:

J. Harada et al., Phys. Rev. D 64 (2001) 074501

H. Matsufuru, T. Onogi and T. Umeda, Phys. Rev. D 64 (2001) 114503

J. Harada, H. Matsufuru, T. Onogi and A. Sugita, Phys. Rev. D 66 (2002) 014509

H. Matsufuru, J. Harada, T. Onogi and A. Sugita, hep-lat/0209090

This copy available at: http://www.rcnp.osaka-u.ac.jp/~matufuru/

Introduction

Recent experimental developments in flavor physics — B factories, Charm factory, ... \Rightarrow need precise theoretical predictions ($\simeq 2\%$) of hadron matrix elements

Problem in lattice QCD calculations:

for heavy quarks (c and b), large $O(am_Q)$ error

We need a framework which has

- (i) continuum limit
- (ii) systematic improvement

such as Nonperturbative renormalization technique (for $m_q \simeq 0$)

(iii) modest size of computation

Previous approaches ($\sim 10\%$ systematic accuracy):

a). Effective theories (NRQCD, etc) — (i)×

Thacker and Lepage, Phys. Rev. D 43 (1991) 196.

- b). Relativistic framework (iii)imes
- c). Fermilab approach (with/without mass dependent tuning) El-Khadra et al., Phys. Rev. D 55 (1997) 3933. Sroczynski, et al., Nucl. Phys. B (PS) 83 (2000) 971. — (ii)×

To achieve calculations with $\sim 2\%$ precision, we need yet another approach which satisfies above condition (i)–(iii). \Rightarrow our proposal: Anisotropic lattice

Anisotropic lattice QCD(1)

Anisotropic lattice: $a_{\tau} < a_{\sigma} \implies Anisotropy \quad \xi = a_{\sigma}/a_{\tau}$

Quark action: O(a) improved, along with Fermilab approach \Box bare anisotropy parameter γ_F :

> in general, to be tuned mass dependently e.g., using meson dispersion relation

 \circ Continuum limit \bigcirc

 \circ Modest computational cost \bigcirc

 \circ Systematic improvement ?

If quark mass is sufficiently less than a^{-1} ,

tuned parameters for massless quark are applicable.

 \rightarrow nonperturbative renormalization technique

Lüscher et al., Nucl. Phys. B 491 (1997) 323.

Our expectation:

For $m_Q \ll a_{\tau}^{-1}$, (not necessarily $m_Q \ll a_{\sigma}^{-1}$), mass dependences of parameters in the action are so small that the tuned parameters for massless quark are also applicable in such a quark mass region.

Then, systematic improvement is possible. \bigcirc (performed at $m_q \simeq 0$)

 \Rightarrow To be justified numerically, and in perturbation theory.

 \Box 1st stage: $O(a^0)$ calibration \rightarrow physics results

 \Box 2nd stage: high precision calibration

Quark action:

$$S_F = \sum_{x,y} \bar{\psi}(x) K(x,y) \psi(y)$$

$$\begin{split} K(x,y) &= \delta_{x,y} - \kappa_{\tau} \left[(1-\gamma_4) U_4(x) \delta_{x+\hat{4},y} + (1+\gamma_4) U_4^{\dagger}(x-\hat{4}) \delta_{x-\hat{4},y} \right] \\ &- \kappa_{\sigma} \sum_i \left[(r-\gamma_i) U_i(x) \delta_{x+\hat{i},y} + (r+\gamma_i) U_i^{\dagger}(x-\hat{i}) \delta_{x-\hat{i},y} \right] \\ &- \kappa_{\sigma} c_E \sum_i \sigma_{4i} F_{4i}(x) \delta_{x,y} + r \kappa_{\sigma} c_B \sum_{i>j} \sigma_{ij} F_{ij}(x) \delta_{x,y} \end{split}$$

Umeda et al., Int. J. Mod. Phys. A 16 (2001) 2215 Harada et al., Phys. Rev. D 64 (2001) 074501

- Constructed following the Fermilab approach. El-Khadra et al., Phys. Rev. D 55 (1997) 3933
- $r = 1/\xi$ (action retains explicit Lorentz invariant form) (cf. another choice r = 1 was adopted in several works.)

Parameters in tadpole improved tree level:

 \rightarrow applicable to O(10%) simulations

- Clover coefficients: $c_E = 1/u_{\sigma}^2 u_{\tau}$, $c_B = 1/u_{\sigma^3}$ u_{σ} , u_{τ} : mean-field values of spatial and temporal link variables
- Parameters varied in simulations: (κ, γ_F)

$$\gamma_F \equiv \frac{\kappa_\tau u_\tau}{\kappa_\sigma u_\sigma} , \qquad \frac{1}{\kappa} = \frac{1}{\kappa_\sigma u_\sigma} - 2(\gamma_F + 3r - 4) \quad (= 2(m_0\gamma_F + 4))$$

 γ_F : bare anisotropy parameter

 m_0 : bare quark mass (in units of $a_{ au}^{-1}$)

For a few percent level calculation,

parameters γ_F , c_E , c_B should be tuned nonperturbatively

Tree level analysis of quark dispersion relation (γ_F set to ξ)

$$E^{2} = M_{1}^{2} + \left(\frac{\xi^{\text{tree}}}{\xi_{F}^{\text{tree}}}\right)^{2} \vec{p}^{2} + A_{1}a_{\sigma}^{2}(\vec{p}^{2})^{2} + A_{2}a_{\sigma}^{2}\sum_{i}p_{i}^{4} + \cdots$$

Anisotropic lattice QCD(4)

Conjecture of a_{σ} dependence of tuned anisotropy parameter (figures roughly at charm quark mass)

 $\circ a_{\sigma}^{hh-hl}$: above which heavy-heavy and heavy-light systems are inconsistent for single γ_F value. $\leftarrow O((a_{\sigma}p)^2)$ error in quarkonia, not improved by anisotropy $\circ a_{\sigma}^{hl-ll}$: below which $\gamma_F(m_q) \simeq \gamma_F(m_q = 0)$ holds, within certain (say, 2%) accuracy.

Below a_{σ}^{hl-ll} , $\gamma_F(m_q = 0)$ correctly describes heavy-light systems.

1st stage results (1): summary

We have obtained the following results.

 \Box One-loop perturbative calculation:

Harada et al., Phys. Rev. D 64 (2001) 074501

- Renormalization factors of heavy-light bilinears and quark rest mass at $m_Q a_\sigma \sim 1$, $m_Q \ll a_\tau^{-1}$
- \Rightarrow Well approximated with linear form in $m_Q a_\tau$ — quark mass dependence can be controlled

□ Numerical simulation:

In quenched approximation, tadpole improved c_E and c_B

• Mass dependent tuning

Matsufuru, Onogi and Umeda, Phys. Rev. D 64 (2001) 114503

 γ_F is tuned with meson dispersion relation Quark mass dependence is small for $m_q a_\tau \ll 1$

• Test of relativity relation

Harada et al., Phys. Rev. D 66 (2002) 014509

Heavy-light meson dispersion relation for $\gamma_F = \gamma_F(m_q = 0)$ Relativity relation well holds for $m_q a_\tau \ll 1$ (while $m_q a_\sigma \gtrsim 1$)

• Application to decay constant

Matsufuru, Harada, Onogi and Sugita, hep-lat/0209090 Around charm quark mass, with O(10%) accuracy Result consistent with previous works

- Encouraging results for further development

Mass dependent calibration of γ_F using meson dispersion relation

Simulation: quenched lattices with $\xi = 4$

β	γ_G	size	$a_{\sigma}^{-1}(r_0)$ [GeV]
5.75	3.072	$12^3 \times 96$	1.100(6)
5.95	3.1586	$16^{3} \times 128$	1.623(9)
6.10	3.2108	$20^3 \times 160$	2.030(13)

Calibration result: γ_F^*

— well fitted to linear form in m_q^2 :

$$\frac{1}{\gamma_F^*} = \zeta_0 + \zeta_1 m_q + \zeta_2 m_q^2 \qquad m_q = \frac{1}{2\xi} \left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right)$$

 $\Rightarrow {\rm For} \ m_q a_\tau \ll 1, \ \gamma_F^* \ {\rm is \ well \ approximated \ with \ } \gamma_F^*(m_q \!=\! 0) \\ \gamma_F^*(m_q = 0) \ {\rm is \ determined \ with \ } O(2\%) \ {\rm accuracy}$

Simulation: on quenched anisotropic lattice of size $16^3 \times 128$, $a_{\sigma}^{-1} \simeq 1.6$ GeV and anisotropy $\xi = 4$. Light quark: mass $\sim 1.5 m_s$ Heavy quark: 7 values with $m_Q = 1 - 6$ GeV Bare anisotropy: tuned value at massless limit ($\gamma_F = 4.016$) Heavy-heavy, heavy-light meson dispersion relations

$$E(\vec{p})^2 = m^2 + \frac{\vec{p}^2}{\xi_F^2} + O(\vec{p}^4)$$

 \rightarrow fermionic anisotropy ξ_F $\xi_F \neq \xi$ signals breaking of relativity relation

- $\circ~m_q < 0.3$: for heavy-light mesons, γ_F tuned for massless quark can be applied within 2% accuracy
- $\circ m_q < 0.2$: both heavy-heavy, heavy-light mesons are correctly described within 2% accuracy
- $\circ~0.2 < m_q$: heavy quarkonia suffer from larger $O((ap)^2)$ error

Simulation: quenched anisotropic lattices with $\xi = 4$,

 $\circ 16^3 \times 128$, β = 5.95, $a_{\sigma}^{-1} \simeq 1.6$ GeV $\circ 20^3 \times 160$, β = 6.10, $a_{\sigma}^{-1} \simeq 2.0$ GeV Light quark: 3 values with masses 1–1.5 m_s → chiral extrapolation Heavy quark: 4 values with masses 0.7–1.5 GeV (target mass: charm quark)

Heavy-light pseudoscalar meson decay constant: • mean-field improved tree level matching

*Average of quenched works, S.Ryan, Nucl. Phys. B (PS) 106 (2002) 86. Calibrations of parameters to 0.2% level of accuracy in quenched approximation

 \Rightarrow Applicable to a few percent calculation of matrix elements

 \Box Gauge field:

- Precise computation of static quark potential
- Renormalized anisotropy defined with r_0
- $\Rightarrow O(0.2\%)$ calibration is possible

 \Box Quark field:

We need to calibrate γ_F , c_E , c_B , and c_A (for axial current) in massless limit.

— γ_F must be tuned precisely (to O(0.2%) level) Combine two procedures:

- Nonperturbative renormalization technique
- Spectroscopy in fine and coarse directions Numerical simulation is in progress
- \Box Test in heavy quark region:

Use the parameters tuned in massless limit

- Test of relativity relation
- Check of O(a) improvement

 \Rightarrow Applications to heavy-light matrix elements

2nd stage (2): gauge field

Quenched gauge field calibration

Renormalized anisotropy ξ_G : defined with hadronic radius r_0

- Precise computation possible
- Good scaling behavior (if lattice scale is set by r_0)

Precise computation of static potentials in x and t (fine) directions $(V^{(x)}(x), V^{(t)}(t))$ \Box Lüscher-Weisz noise reduction technique Lüscher and Weisz JHEP 0109 (2001) 010

Hadronic radius r_0 : $r_0^2 F(r_0) = 1.65$ (F(r): force) Sommer, Nucl. Phys. B411 (1994) 839

 $\Rightarrow \xi_G = r_0^{(t)} / r_0^{(x)}$

Example in simulation:

Numerical simulation at $\beta = 5.75$ ($\xi = 4$):

Input γ_G (6 points) $\rightarrow \xi_G(\gamma_G)$ with 0.2% γ_G^* (s.t. $\xi_G(\gamma_G^*) = \xi$) determined by fit with 0.2% accuracy

Cf. previous work by Klassen: Klassen, Nucl. Phys. B533 (1998) 557 • ξ_G defined with ratios of Wilson loops • global fit in β and ξ $\Rightarrow \gamma_G^*(\beta, \xi)$ with 1% accuracy

We are now performing calibration in wide range of β at $\xi = 4$.

2nd stage (4): quark field

Quenched quark field calibration

Nonperturbative improvement technique

[1] Lüscher et al., Nucl. Phys. B478 (1996) 365

[2] Lüscher and Weisz, Nucl. Phys. B479 (1996) 429

[3] Lüscher et al., Nucl. Phys. B491 (1997) 323

Schrödinger functional method:

Implementation for anisotropic lattice is straightforward.

(*t*-direction set to the fine direction)

PCAC relation up to $O(a^2)$

 \Rightarrow improvement conditions for c_E , c_A (and γ_F)

In the same way as Ref. [1,3]:

Unrenormalized current quark mass

 $m = \frac{1}{2} \left[\frac{1}{2} (\partial_0^* + \partial_0)_0 f_A(t) + c_A a_\tau \partial_0^* \partial_0 f_P(t) \right] / f_P(t)$

$$f_A(t) = -a_{\sigma}^6 \sum_{\vec{y},\vec{z}} \frac{1}{3} \langle A_0^a(x) \bar{\zeta}(\vec{y}) \gamma_5 \frac{1}{2} \tau^a \zeta(\vec{z}) \rangle$$

$$f_P(t) = -a_{\sigma}^6 \sum_{\vec{y},\vec{z}} \frac{1}{3} \langle P^a(x) \bar{\zeta}(\vec{y}) \gamma_5 \frac{1}{2} \tau^a \zeta(\vec{z}) \rangle$$

 $t = x_0$, $\bar{\zeta}$, ζ are boundary quark field

Improvement condition: m does not depend on kinematical parameters (such as boundary gauge field)

• c_B may not be tuned with sufficient accuracy

- Nonzero background field is electric at tree level

• γ_F may be tuned more precisely in spectroscopy method

2nd stage (5): quark field

Tree level analysis of Schrödinger functional — Details follow Sec. 6 of Ref. [2]

With nonzero background gauge field: $V_k(x) = \exp(ia_\sigma b(t)), \quad b(t) \text{ linear in } t,$ $f_A^{(0)}(t) = \frac{1}{2} \operatorname{tr} \{ H^{(0)}(x)^{\dagger} \gamma_0 H^{(0)}(x) \}$

 $H^{(0)}(x)$: tree level propagator defined through

$$\{P_{+}\partial_{0}^{*} - P_{-}\partial_{0} + \mathcal{A}(t) + i\mathcal{B}(t)\gamma + i\mathcal{C}(t)\gamma_{0}\gamma\}H^{(0)}(x) = 0, \quad 0 < t < T$$
$$P_{+}H^{(0)}(x)|_{t=0} = P_{+}, \qquad P_{-}H^{(0)}(x)|_{t=T} = 0$$

where $\zeta = \gamma_F^{-1}$, $\gamma = \gamma_1 + \gamma_2 + \gamma_3$,

$$\mathcal{A}(t) = \frac{6}{a_{\sigma}} \zeta^{(0)} \sin^2[a_{\sigma}(b(t) + \theta/L)/2],$$

$$\mathcal{B}(t) = \frac{1}{a_{\sigma}} \xi \zeta^{(0)} \sin[a_{\sigma}(b(t) + \theta/L)],$$

$$\mathcal{C}(t) = -\frac{c_E^{(0)}}{2} \frac{\zeta^{(0)}}{a_{\tau}} \sin[a_{\sigma}a_{\tau}\partial_0 b(t)]$$

With ansatz $H^{(0)} = [s_1(t) + is_2(t)\gamma]P_+$,

$$\frac{1}{2}(\partial_0^* + \partial_0)f_A^{(0)}(t) = \operatorname{tr}\{c_1(t)s_1(t)^2 + c_2(t)s_2(t)^2 + c_3(t)s_1(t)s_2(t)\}$$

 $c_1\text{,}~c_2\text{,}~c_3$ are explicitly given in terms of $\mathcal{A}(t)\text{,}~\mathcal{B}(t)\text{,}~\mathcal{C}(t)$

PCAC relation up to
$$O(a^2)$$
: c_1 , c_2 , c_3 are $O(a^2)$
 $\Rightarrow \xi \zeta^{(0)} = 1$, $c_E^{(0)} = 1$: tree level relations reproduced

2nd stage (6): quark field

Calibration steps:

(1) Schrödinger functional method \Rightarrow tuning of c_E , (γ_F)

(2) Spectroscopy in coarse and fine directions on lattices with $T, L \gtrsim 2$ fm Physical isotropy conditions for m_{PS} , m_V \Rightarrow tuning of γ_F , c_B

- (3) Schrödinger functional method \Rightarrow determine c_A , κ_c
- (4) Check of systematic errorsLight hadron spectrum and dispersion relationTaking the continuum limit

Summary and outlook

We are developing anisotropic lattices for precise computation of heavy-light matrix elements.

Results obtained so far are encouraging for further development.

We have started precise calibrations of gauge and quark fields in quenched approximation.

Outlook:

- \Box How can we verify that parameters in $m_q = 0$ suffices for heavy quark mass ?
- □ Mass dependent tuning for bottom quark region \circ Tree level γ_F may be a good approximation.
- \Box Applications to heavy-light matrix elements \rightarrow High precision computation actually possible ?
- Extension to dynamical QCD:
 Which calibration procedure is most efficient ?