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Introduction

Recent experimental developments in flavor physics
— B factories, Charm factory, ...

⇒ need precise theoretical predictions (≃ 2%)
of hadron matrix elements

Problem in lattice QCD calculations:
for heavy quarks (c and b), large O(amQ) error

We need a framework which has
(i) continuum limit
(ii) systematic improvement

such as Nonperturbative renormalization technique (for mq ≃ 0)

(iii) modest size of computation

Previous approaches (∼10% systematic accuracy):
a). Effective theories (NRQCD, etc) — (i)×

Thacker and Lepage, Phys. Rev. D 43 (1991) 196.

b). Relativistic framework — (iii)×
c). Fermilab approach (with/without mass dependent tuning)

El-Khadra et al., Phys. Rev. D 55 (1997) 3933.

Sroczynski, et al., Nucl. Phys. B (PS) 83 (2000) 971.

— (ii)×

To achieve calculations with ∼2% precision, we need
yet another approach which satisfies above condition (i)–(iii).

⇒ our proposal: Anisotropic lattice



Anisotropic lattice QCD (1)

Anisotropic lattice: aτ < aσ ⇒ Anisotropy ξ = aσ/aτ

Quark action: O(a) improved, along with Fermilab approach
2 bare anisotropy parameter γF :

in general, to be tuned mass dependently
e.g., using meson dispersion relation

◦ Continuum limit ©··⌣

◦ Modest computational cost ©··⌣

◦ Systematic improvement ?
If quark mass is sufficiently less than a−1,
tuned parameters for massless quark are applicable.
→nonperturbative renormalization technique

Lüscher et al., Nucl.Phys. B 491 (1997) 323.

Our expectation:
For mQ ≪ a−1

τ , (not necessarily mQ ≪ a−1
σ ),

mass dependences of parameters in the action are so small
that the tuned parameters for massless quark are also
applicable in such a quark mass region.

Then, systematic improvement is possible. ©··⌣

(performed at mq ≃ 0)

⇒ To be justified numerically, and in perturbation theory.

2 1st stage: O(a0) calibration → physics results
2 2nd stage: high precision calibration



Anisotropic lattice QCD (2)

Quark action:
SF =

∑

x,y
ψ̄(x)K(x, y)ψ(y)

K(x, y) = δx,y − κτ
[

(1− γ4)U4(x)δx+4̂,y + (1 + γ4)U
†
4(x− 4̂)δx−4̂,y

]

−κσ
∑

i

[

(r − γi)Ui(x)δx+î,y + (r + γi)U
†
i (x− î)δx−î,y

]

−κσcE
∑

i
σ4iF4i(x)δx,y + rκσcB

∑

i>j
σijFij(x)δx,y

Umeda et al., Int. J. Mod. Phys. A 16 (2001) 2215

Harada et al., Phys. Rev. D 64 (2001) 074501

• Constructed following the Fermilab approach.
El-Khadra et al., Phys. Rev. D 55 (1997) 3933

• r = 1/ξ (action retains explicit Lorentz invariant form)
(cf. another choice r = 1 was adopted in several works.)

Parameters in tadpole improved tree level:
→ applicable to O(10%) simulations

• Clover coefficients: cE = 1/u2
σuτ , cB = 1/uσ3

uσ, uτ : mean-field values of spatial and temporal link variables

• Parameters varied in simulations: (κ, γF )

γF ≡
κτuτ
κσuσ

,
1

κ
=

1

κσuσ
− 2(γF + 3r − 4) (= 2(m0γF + 4))

γF : bare anisotropy parameter
m0: bare quark mass (in units of a−1

τ )

For a few percent level calculation,
parameters γF , cE, cB should be tuned nonperturbatively



Anisotropic lattice QCD (3)

Tree level analysis of quark dispersion relation (γF set to ξ)

E2 = M 2
1 +







ξtree

ξtree
F







2

~p2 + A1a
2
σ(~p

2)2 + A2a
2
σ

∑

i
p4
i + · · · ,

◦ ξF/ξ : reduced by
a factor of anisotropy

(M2: kinetic mass)
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◦ A2: not reduced, same
size as massless quark

— severe in heavy
quarkonium (p ∼ αmQ)
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Anisotropic lattice QCD (4)

Conjecture of aσ dependence of tuned anisotropy parameter
(figures roughly at charm quark mass)

◦ ahh-hlσ : above which heavy-heavy and heavy-light systems
are inconsistent for single γF value.

← O((aσp)
2) error in quarkonia, not improved by anisotropy

◦ ahl-llσ : below which γF (mq) ≃ γF (mq = 0) holds,
within certain (say, 2%) accuracy.

Below ahl-llσ , γF (mq = 0) correctly describes heavy-light systems.

• Isotropic lattice

ahl-llσ < ahh-hlσ
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• Anisotropic lattice (ξ = 4)

ahl-llσ
>
∼ ahh-hlσ

⇒ ahl-llσ is extended
by a factor ξ.
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1st stage results (1): summary

We have obtained the following results.

2 One-loop perturbative calculation:
Harada et al., Phys. Rev. D 64 (2001) 074501

Renormalization factors of heavy-light bilinears and
quark rest mass at mQaσ ∼ 1, mQ ≪ a−1

τ

⇒ Well approximated with linear form in mQaτ

— quark mass dependence can be controlled

2 Numerical simulation:
In quenched approximation, tadpole improved cE and cB

• Mass dependent tuning
Matsufuru, Onogi and Umeda, Phys. Rev. D 64 (2001) 114503

γF is tuned with meson dispersion relation
Quark mass dependence is small for mqaτ ≪ 1

• Test of relativity relation
Harada et al., Phys. Rev. D 66 (2002) 014509

Heavy-light meson dispersion relation for γF = γF (mq = 0)
Relativity relation well holds for mqaτ ≪ 1 (while mqaσ >

∼ 1)

• Application to decay constant
Matsufuru, Harada, Onogi and Sugita, hep-lat/0209090

Around charm quark mass, with O(10%) accuracy
Result consistent with previous works

— Encouraging results for further development



1st stage results (2): mass dependent tuning

Mass dependent calibration of γF
using meson dispersion relation

Simulation: quenched lattices with ξ = 4

β γG size a−1
σ (r0) [GeV]

5.75 3.072 123 × 96 1.100(6)

5.95 3.1586 163 × 128 1.623(9)

6.10 3.2108 203 × 160 2.030(13)

Calibration result: γ∗F
— well fitted to linear form in m2

q:

1

γ∗F
= ζ0 + ζ1mq + ζ2m

2
q mq =

1

2ξ





1

κ
−

1

κc





⇒ For mqaτ ≪ 1, γ∗F is well approximated with γ∗F (mq=0)

γ∗F (mq = 0) is determined with O(2%) accuracy
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1st stage results (3): Relativity relation

Simulation: on quenched anisotropic lattice of
size 163 × 128, a−1

σ ≃ 1.6 GeV and anisotropy ξ = 4.

Light quark: mass ∼ 1.5ms

Heavy quark: 7 values with mQ = 1 – 6 GeV
Bare anisotropy: tuned value at massless limit (γF = 4.016)

Heavy-heavy, heavy-light meson dispersion relations

E(~p)2 = m2 +
~p 2

ξ2
F

+ O(~p 4)

→ fermionic anisotropy ξF
ξF 6= ξ signals breaking of relativity relation
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 heavy−heavy (Set−I)
 heavy−light (Set−I)
 tree level

β=5.95 PS

◦ mq < 0.3 : for heavy-light mesons, γF tuned for massless
quark can be applied within 2% accuracy

◦ mq < 0.2 : both heavy-heavy, heavy-light mesons are
correctly described within 2% accuracy

◦ 0.2 < mq: heavy quarkonia suffer from larger O((ap)2) error



1st stage results (4): Heavy-light decay constant

Simulation: quenched anisotropic lattices with ξ = 4,
◦ 163 × 128, β = 5.95, a−1

σ ≃ 1.6 GeV

◦ 203 × 160, β = 6.10, a−1
σ ≃ 2.0 GeV

Light quark: 3 values with masses 1–1.5 ms

→ chiral extrapolation
Heavy quark: 4 values with masses 0.7–1.5 GeV

(target mass: charm quark)

Heavy-light pseudoscalar meson decay constant:
◦ mean-field improved tree level matching
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β=6.10 (K* meson mass scale)

1/mDs
1/mD

1/mB

β = 5.95 β = 6.10 previous works∗

fD/fπ 1.566(43) 1.515(43) 1.55(11)

fDs
/fD 1.140(14) 1.142(14) 1.12(2)

∗Average of quenched works,

S.Ryan, Nucl. Phys. B (PS) 106 (2002) 86.



2nd stage (1): strategy

Calibrations of parameters to 0.2% level of accuracy
in quenched approximation

⇒Applicable to a few percent calculation of matrix elements

2 Gauge field:
• Precise computation of static quark potential
• Renormalized anisotropy defined with r0
⇒ O(0.2%) calibration is possible

2 Quark field:
We need to calibrate γF , cE, cB, and cA (for axial current)
in massless limit.

— γF must be tuned precisely (to O(0.2%) level)
Combine two procedures:
• Nonperturbative renormalization technique
• Spectroscopy in fine and coarse directions

Numerical simulation is in progress

2 Test in heavy quark region:
Use the parameters tuned in massless limit
• Test of relativity relation
• Check of O(a) improvement

⇒ Applications to heavy-light matrix elements



2nd stage (2): gauge field

Quenched gauge field calibration

Renormalized anisotropy ξG: defined with hadronic radius r0
• Precise computation possible
• Good scaling behavior (if lattice scale is set by r0)

Precise computation of static potentials
in x and t (fine) directions (V (x)(x), V (t)(t))

2 Lüscher-Weisz noise reduction technique
Lüscher and Weisz JHEP 0109 (2001) 010

Hadronic radius r0: r2
0F (r0) = 1.65 (F (r): force)

Sommer, Nucl. Phys. B411 (1994) 839

⇒ξG = r
(t)
0 /r

(x)
0

Example in simulation:
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r I)
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2nd stage (3): gauge field

Numerical simulation at β = 5.75 (ξ = 4):

Input γG (6 points) → ξG(γG) with 0.2%

γ∗G (s.t. ξG(γ∗G) = ξ) determined by fit with 0.2% accuracy

3.05 3.10 3.15 3.20 3.25
γG

3.90

3.95

4.00

4.05

4.10

ξ G
(γ

G
 )

12
3 
x 48β=5.75

γG*
 
=3.1399(52)

Cf. previous work by Klassen:
Klassen, Nucl. Phys. B533 (1998) 557

• ξG defined with ratios of Wilson loops
• global fit in β and ξ
⇒ γ∗G(β, ξ) with 1% accuracy

We are now performing calibration in wide range of β at ξ = 4.



2nd stage (4): quark field

Quenched quark field calibration

Nonperturbative improvement technique
[1] Lüscher et al., Nucl. Phys. B478 (1996) 365

[2] Lüscher and Weisz, Nucl. Phys. B479 (1996) 429

[3] Lüscher et al., Nucl. Phys. B491 (1997) 323

Schrödinger functional method:
Implementation for anisotropic lattice is straightforward.

(t-direction set to the fine direction)

PCAC relation up to O(a2)

⇒ improvement conditions for cE, cA (and γF )

In the same way as Ref. [1,3]:
Unrenormalized current quark mass

m = 1
2[

1
2(∂
∗
0 + ∂0)0fA(t) + cAaτ∂

∗
0∂0fP (t)]/fP (t)

fA(t) = −a6
σ

∑

~y,~z

1
3
〈Aa

0(x)ζ̄(~y)γ5
1
2
τ aζ(~z)〉

fP (t) = −a6
σ

∑

~y,~z

1
3
〈P a(x)ζ̄(~y)γ5

1
2
τ aζ(~z)〉

t = x0, ζ̄, ζ are boundary quark field

Improvement condition: m does not depend on kinematical
parameters (such as boundary gauge field)

• cB may not be tuned with sufficient accuracy
— Nonzero background field is electric at tree level

• γF may be tuned more precisely in spectroscopy method



2nd stage (5): quark field

Tree level analysis of Schrödinger functional

— Details follow Sec. 6 of Ref. [2]

With nonzero background gauge field:
Vk(x) = exp(iaσb(t)), b(t) linear in t,

f
(0)
A (t) =

1

2
tr{H(0)(x)†γ0H

(0)(x)}

H(0)(x): tree level propagator defined through

{P+∂
∗
0 − P−∂0 +A(t) + iB(t)γ + iC(t)γ0γ}H

(0)(x) = 0, 0 < t < T

P+H
(0)(x)|t=0 = P+, P−H

(0)(x)|t=T = 0

where ζ = γ−1
F , γ = γ1 + γ2 + γ3,

A(t) =
6

aσ
ζ(0) sin2[aσ(b(t) + θ/L)/2],

B(t) =
1

aσ
ξζ(0) sin[aσ(b(t) + θ/L)],

C(t) = −
c
(0)
E

2

ζ(0)

aτ
sin[aσaτ∂0b(t)]

With ansatz H(0) = [s1(t) + is2(t)γ]P+,

1

2
(∂∗0 + ∂0)f

(0)
A (t) = tr{c1(t)s1(t)

2 + c2(t)s2(t)
2 + c3(t)s1(t)s2(t)}

c1, c2, c3 are explicitly given in terms of A(t), B(t), C(t)

PCAC relation up to O(a2): c1, c2, c3 are O(a2)

⇒ ξζ(0) = 1, c
(0)
E = 1: tree level relations reproduced



2nd stage (6): quark field

Calibration steps:

(1) Schrödinger functional method
⇒ tuning of cE, (γF )

(2) Spectroscopy in coarse and fine directions
on lattices with T ,L >

∼ 2 fm
Physical isotropy conditions for mPS, mV

⇒ tuning of γF , cB

(3) Schrödinger functional method
⇒ determine cA, κc

(4) Check of systematic errors
Light hadron spectrum and dispersion relation
Taking the continuum limit



Summary and outlook

We are developing anisotropic lattices for precise computation
of heavy-light matrix elements.

Results obtained so far are encouraging for further development.

We have started precise calibrations of gauge and quark fields
in quenched approximation.

Outlook:

2 How can we verify that parameters in mq=0 suffices
for heavy quark mass ?

2 Mass dependent tuning for bottom quark region
◦ Tree level γF may be a good approximation.

2 Applications to heavy-light matrix elements
→ High precision computation actually possible ?

2 Extension to dynamical QCD:
Which calibration procedure is most efficient ?


