Charmonium correlators at finite temperature in quenched lattice QCD

Hideo Matsufuru¹, Takashi Umeda¹, and Kouji Nomura²

¹Yukawa Institute for Theoretical Physics, Kyoto University ²Department of Physics, Hiroshima University

> Confinement 2003 21–24 July 2003, Wako, Japan

Refs.:

T. Umeda, K. Nomura, and H. Matsufuru, hep-lat/0211003 T.Umeda et al., Int. J. Mod. Phys. A16 (2001) 2215

This copy available at: http://www.rcnp.osaka-u.ac.jp/~matufuru/

Introduction

Charmonium states at finite temperature:

- Important signal for formation of quark gluon plasma in heavy ion collision experiments
- Theoretical understanding Based on potential model
 - \circ Mass shift near T_c
 - Hashimoto et al., Phys. Rev. Lett. 57 (1986) 2123
 - $\circ J/\psi$ suppression above T_c
 - Matsui and Satz, Phys. Lett. B178 (1986) 416
 - No bound state above T_c ?
 - \circ Bound state may exist near T_c
 - Digal et al., Phys. Rev. D 64 (2001) 094015
- Lattice QCD
 - Quark and antiquark still interact strongly at T > T_c
 behavior different from free quark picture
 QCD-TARO Collab., Phys. Rev. D 63 (2001) 054501
 Umeda et al., Int. J. Mod. Phys. A16 (2001) 2215

In this work, we analyze spectral functions of mesonic correlators in lattice QCD below and above T_c as well as at T = 0.

Our approach (1)

Temporal correlators in lattice simulations

 $C(t) = \sum\limits_{\vec{x}} \langle O(\vec{x},t) O^{\dagger}(0) \rangle \qquad [O(\vec{x},t): \text{meson operator}]$

 \Rightarrow Spectral function $A(\omega)$

$$C(t) = \int d\omega K(t,\omega) A(\omega) \qquad K(t,\omega) = \frac{e^{-\omega t} + e^{-\omega(N_t - t)}}{1 - e^{-N_t \omega}}$$

□ Anisotropic lattice

 \Rightarrow sufficient number of d.o.f.

□ Smearing technique

 \Rightarrow low energy part of correlators enhanced Point correlators are also analyzed at T = 0

□ Analysis procedures:

Maximum entropy method (MEM)

Nakahara et al., Phys. Rev. D60 (99) 091503

- without assuming specific form

• χ^2 fit analysis

- with several ansätze for spectral functions

 \Rightarrow Sum of (relativistic) Breit-Wigner or pole type functions

Sophisticated form: constrained curve fitting

Lepage et al., Nucl. Phys. B (PS) 106 (2002) 12

- add prior knowledge

We use these two methods in complementary manner

Our approach (2)

 \Box Criteria for the extraction methods:

- Stability for input parameters or model functions
- Stable result for T = 0 correlators with restricted number of d.o.f. (similar to the condition at T > 0)

 \Box Problem with smeared operators:

Possibility to detect artificial peak

 \Rightarrow need check with various smearing functions

Lattice setup

Anisotropic lattices in quenched approximation

•
$$\xi = a_{\sigma}/a_{\tau} = 4$$
, $a_{\sigma}^{-1} = 2.030(13)$ GeV

• Size :
$$20^3 \times N_t$$

N_t	T/T_c	$N_{conf} \times N_{source}$
160	\sim 0	500 imes 16
32	~ 0.9	1000 imes16
26	~ 1.1	1000×16

• Quark action: O(a) improved Wilson quark action $(\kappa, \gamma_F) = (0.1120, 4.000)$

 \rightarrow roughly correspond to charm quark mass Matsufuru et al., Phys. Rev. D 64 (2001) 114503

• Smearing function: wave function measured at T = 0We also employ "half-smeared" operators

We first examine two analysis methods at T = 0for the point and smeared correlators.

Numerical Results (1): point correlators

□ Point-point correlators

	t_{min}	t_{max}	t_{sep}	N_{DF}
Type-I	1	48	1	48
	1	24	1	24
	1	16	1	16
	1	12	1	12
Type-II	1	48	1	48
	2	48	2	24
	4	48	4	12
	8	48	8	6

- $t_{max} \simeq 16$ is not acceptable
- $\bullet \ O(10)$ degree of freedom is necessary
- $t_{max}a_{\tau}$ of O(1 fm) is necessary
- \implies This requirement cannot be fulfilled at T > 0.

Numerical Results (2): smeared correlators

- In the following, we focus on the low frequency part (lowest peak) of $\rho(\omega)$.
 - \Rightarrow Smeared (and half-smeared) correlators

 \Box Effective mass plot m_{eff} of smeared correlators

$$\frac{C(t)}{C(t+1)} = \frac{\cosh\left[m_{eff}(t)(N_t/2 - t)\right]}{\cosh\left[m_{eff}(t)(N_t/2 - t - 1)\right]}$$

\Box Spectrum at T = 0

— determined by two-pole fit

state	m_{PS}	m_V
ground	0.36856(9)	0.37769(12)
first exc.	0.500(22)	0.479(23)
fit range	17-80	15-80

Numerical Results (3): summary of results

Results for smeared correlators:

- $\circ \chi^2$ fit analysis: 2-pole, 1BW, BW+pole(exc.)
- Constrained curve fitting: multi-BW (1-4)
 - In general, constrained curve fitting gives consistent result with standard χ^2 fit

 \Box At T = 0

- In MEM, ground state peak is stable with change of t_{max} — For $t_{max} = 12$ ground state peak appears at correct place
- No indication of finite width for ground state, as expected

 \Box At $T = 0.9T_c$

- MEM and fit analysis give consistent results
- \bullet Ground state peaks locate at almost the same places as T=0
- Width from fit is consistent with zero
 No indication of finite width for ground states

 \Box At $T = 1.1T_c$

- MEM and fit analysis give consistent results
- Smeared and half-smeared correlators give consistent results
- Behavior under change of smearing function is NOT similar to the free quark case
- \Rightarrow We conclude that physical peak is observed — bound-state-like structure
- Finite width is observed ($\Gamma\sim$ 200 MeV)
- Peak positions are almost same as $T < T_c$

Numerical Results (4): result at $T \simeq 1.1T_c$

Spectral function determined by fit (Only lowest peak is shown.)

Pseudoscalar

Vector

<u>Conclusion and outlook</u>

- $\Box T \simeq 1.1 T_c$
- Spectral function: still strong peak structure at almost the same position as $T < T_c$

 \Rightarrow Existence of quasi-stable bound-state-like structure Finite width of 100-200 MeV

• Cf. spatial $c\bar{c}$ correlation

 \Rightarrow Strong spatial correlation between $c\bar{c}$ still at $T\sim 1.5T_c$

 $\Box T \simeq 0.9T_c$

- No indication of finite width
- No indication of mass shift

□ Procedures:

- MEM (as well as fit analysis) should be applied carefully
- For point correlators, naive application may fail at T>0
- Better to combine with other analysis methods

Outlook

- \circ Analysis in wider range of temperature
- Light quark region
- Dynamical quark effects

- In MEM, ground state peak is stable with change of t_{max}
- Consistency of methods
- No indication of finite width for ground state, as expected

Appendix: Results at $T = 0.9T_c$

- \bullet Ground state peaks locate at almost the same as T=0
- Width from fit is consistent with zero.
 - No indication of finite width for ground state

- There observed hadron-like peak.
- Finite width is observed ($\Gamma\sim$ 200 MeV).
- Peak position is almost same as $T < T_c$.