Charmonium near the deconfining transition on the lattice

<u>Takashi Umeda</u>, (CCP, Univ. of Tsukuba) Hideo Matsufuru, (YITP Kyoto Univ.) Osamu Miyamura, (Dept. Phys. Hiroshima Univ. deceased) Kouji Nomura, (Dept. Phys. Hiroshima Univ.)

The XVI Particles and Nuclei International Conference 30 September – 4 October 2002, Osaka i-House, JAPAN

Introduction

 $\blacksquare J/\psi$ (charmonium) states important signal for formation of QGP heavy ion experiment at CERN(SPS), BNL(RHIC) c.f. NA50 Phys.Lett.B477(2000)28 Theoretical understanding Potential model Mass shift near T_c T. Hashimoto et al., Phys.Rev.Lett.57(1986)2123 J/ψ suppression above T_c T.Matsui and H.Satz, Phys.Lett.B178(1986)416 \implies no bound state at $T \gtrsim 1.1T_c$ Lattice QCD ▷ Meson correlators T. Umeda et al., Int.J.Mod.Phys.A16(2000)2215 \implies not free behavior at $T \sim 1.5T_c$

Study of Charmonium at T > 0 using lattice QCD

Our approach

We perform a combined study of lattice QCD and phenomenological approaches for definite understanding of charmonium properties at T > 0.

- Phenomenological approach
 - Potential model analysis
 - Static quark potential on the lattice
 - \Box Spatial *c*- \bar{c} correlation
 - Spectral function (SPF)
 - Maximum Entropy Method
 - Fit with ansatz for SPFs form

Lattice setup

We employ the anisotropic lattice $a_s/a_t = 4$ without dynamical quarks

Plaquette gauge + O(a) improved Wilson quark $20^3 \times N_t$, $T = 1/(N_t a_t)$ $a_s^{-1} = 2.030(13)$ GeV, $L_s \simeq 2$ fm

Potential model analysis

Static quark potential at $T > T_c$ on the lattice

 $V(r) = C - A \exp\left(-\mu r\right)/r$

T/T_c	A_{phys}	$\mu[{\sf GeV}]$
1.05	0.2176(35)	0.469(19)
1.10	0.1770(30)	0.686(18)
1.15	0.1361(28)	0.887(19)
1.40	0.0849(19)	1.171(20)
2.00	0.0456(22)	1.760(38)

Schr
edinger equation for a stationary state

T-dep. of μ and μ_c : For a charmonium state $m_q = 1.3 \text{ GeV}$ No bound state at $T > 1.05T_c$

Spatial $c\bar{c}$ correlation "Wave function" on the Coulomb gauge $w_{\Gamma}(r,t) = \sum_{\vec{-}} \langle \bar{c}(\vec{x}+\vec{r},t) \Gamma c(\vec{x},t) O^{\dagger}(0) \rangle$ $\phi(r,t):\;$ normalized at the spatial origin t=t1 t=t₀ t=t₀ t=t1 r 10[°] V, 0.93T_c V, 1.52T_c 10^{-1} $\phi(\mathbf{r},\mathbf{t})$ 10⁻² t=4t=4=6 =6 t=8 =2 (free) t=2 (free) 4 (free) t=4 (free) t=6 (free) t=6 (free) t=8 (free 10⁻³ 10 5 0 5 10 T. Umeda et al., Int.J.Mod.Phys.A16(2000)2215

 \blacktriangleright *c*- \bar{c} strongly correlate even at $T \simeq 1.5T_c$

Spectral function (SPF) at T = 0Maximal Entropy Method (MEM) \Rightarrow Necessary conditions for the SPFs at $T > T_c$ 200 200 T=0 T=0sep=1:48points t_{max}=48:48points sep=2 : 24points t_{max}=24 : 24points =4 : 12points 150 150 _=12 : 12points $A(\omega)/\omega^2$ (rescaled) t_{max}=48 Δ(ω)/0² 100 50 50 0 0 0.9 0.1 0.4 0 0.2 0.3 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ω (rescaled) M tmin tmax tmin tmax

- \bullet d.o.f. is enough ($\gtrsim 10$ points)
- MEM needs $N_t a_t \sim 1$ fm ($\sim 1/T_c$)

 \implies MEM doesn't work at $T > T_c$

We focus on low energy part of SPFs.
 ⇒ smearing technique
 check with 1/1 smear, 1/2 smear

Spectral function at T > 0

MEM \rightarrow global feature (estimation of the SPF form) Fit with ansatz \rightarrow quantitative analysis

- Breit-Wigner (BW) type / BW + pole type fit
- lowest peak of SPFs at $T \sim 1.1T_c$ from fit results

	mass ($T = 0$)	mass ($1.1T_c$)	width $(1.1T_c)$
η_c	2.993(19)GeV	3.057(31)GeV	0.119(25)GeV
J/ψ	3.067(20)GeV	3.133(26)GeV	0.210(19)GeV

SPFs has strong peaks at almost same position and finite width at $T \sim 1.1T_c$.

Conclusion

```
    Potential model analysis

            No bound state at T ≥ 1.05T<sub>c</sub>

    Spatial cc̄ correlation
            Strong spatial correlation of cc̄ at T ~ 1.5T<sub>c</sub>
    Spectral function
            (0.9T<sub>c</sub>) : Almost same results as T = 0
            (1.1T<sub>c</sub>) : Still strong peaks at same position
            and finite width
            ↓

    The existence of quasi-stable bound state-like structure above T<sub>c</sub> (at least 1.1T<sub>c</sub>)
```

<u>Outlook</u>

MEM & Fit analysis in wider range of temperature Dynamical quark effects