Heavy quark systems in anisotropic lattice QCD

— Toward precision computation of heavy-light matrix elements —

<u>H. Matsufuru¹</u>, T. Onogi¹, A. Sugita¹ and J. Harada²

¹Yukawa Institute for Theoretical Physics, Kyoto University ²Department of Physics, Hiroshima University

> PANIC 2002 30 Sep – 4 Oct 2002, Osaka, Japan

Contents:

Introduction Anisotropic lattice QCD Anisotropic quark action Numerical simulation Relativity relation Heavy-light decay constant Conclusion and outlook

Refs.:

J. Harada et al., Phys. Rev. D 64 (2001) 074501.

H. Matsufuru, T. Onogi and T. Umeda, Phys. Rev. D 64 (2001) 114503.

J. Harada et al., Phys. Rev. D 66 (2002) 014509.

J. Harada, H. Matsufuru, T. Onogi and A. Sugita, hep-lat/0209090.

This copy: http://www.rcnp.osaka-u.ac.jp/~matufuru/

<u>Introduction</u>

Recent experimental developments in flavor physics — B factories, Charm factory, ... \Rightarrow need precise theoretical predictions ($\simeq 2\%$) of hadron matrix elements

Lattice QCD calculations:

```
for heavy quarks (c and b), large O(am_Q) error
```

We need a framework which has

(i) continuum limit

(ii) systematic improvement

such as Nonperturbative renormalization technique (for $m_q \simeq 0$)

(iii) modest size of computation

Previous approaches ($\sim 10\%$ systematic accuracy):

- a). Effective theories (NRQCD, etc) (i)× Thacker and Lepage, Phys. Rev. D 43 (1991) 196.
- b). Relativistic framework (iii) \times
- c). Fermilab approach (with/without mass dependent tuning) El-Khadra et al., Phys. Rev. D 55 (1997) 3933. Sroczynski, et al., Nucl. Phys. B (PS) 83 (2000) 971. — (ii)×

To achieve calculations with $\sim 2\%$ precision, we need yet another approach which satisfies above condition (i)–(iii). \Rightarrow our proposal: Anisotropic lattice

Anisotropic lattice QCD

Anisotropic lattice: $a_{\tau} < a_{\sigma} \Rightarrow$ Anisotropy $\xi = a_{\sigma}/a_{\tau}$ Quark action: O(a) improved, along with Fermilab approach \Box bare anisotropy parameter γ_F : in general, to be tuned mass dependently e.g., using meson dispersion relation ◦ Continuum limit ? yes ! ☺ ◦ Modest computational cost ? yes ! ☺ • Systematic improvement ? If quark mass is sufficiently less than a^{-1} , tuned parameters for massless quark are applicable. \rightarrow nonperturbative renormalization technique Lüscher et al., Nucl. Phys. B 491 (1997) 323. Our expectation: For $m_Q \ll a_{ au}^{-1}$, (not necessarily $m_Q \ll a_{\sigma}^{-1}$), mass dependences of parameters in the action are so small that the tuned parameters for massless quark are also applicable in such a quark mass region. Then, systematic improvement is possible. 😳

Then, systematic improvement is possible. \bigcirc (performed at $m_q \simeq 0$)

 \Rightarrow To be justified numerically, and in perturbation theory.

Quark action:

$$S_F = \sum_{x,y} \bar{\psi}(x) K(x,y) \psi(y)$$

$$K(x,y) = \delta_{x,y} - \kappa_{\tau} \left[(1 - \gamma_4) U_4(x) \delta_{x+\hat{4},y} + (1 + \gamma_4) U_4^{\dagger}(x - \hat{4}) \delta_{x-\hat{4},y} \right] - \kappa_{\sigma} \sum_i \left[(r - \gamma_i) U_i(x) \delta_{x+\hat{i},y} + (r + \gamma_i) U_i^{\dagger}(x - \hat{i}) \delta_{x-\hat{i},y} \right] - \kappa_{\sigma} c_E \sum_i \sigma_{4i} F_{4i}(x) \delta_{x,y} + r \kappa_{\sigma} c_B \sum_{i>j} \sigma_{ij} F_{ij}(x) \delta_{x,y}$$

T. Umeda et al., Int. J. Mod. Phys. A 16 (2001) 2215 J. Harada et al., Phys. Rev. D 64 (2001) 074501

- Constructed following the Fermilab approach. El-Khadra et al., Phys. Rev. D 55 (1997) 3933
- $r = 1/\xi$ (action retains explicit Lorentz invariant form) (cf. another choice r = 1 was adopted in several works.)
- Tadpole improvement: $c_E = 1/u_{\sigma}^2 u_{\tau}$, $c_B = 1/u_{\sigma^3}$ u_{σ} , u_{τ} : mean-field values of spatial and temporal link variables
- Parameters varied in simulations: (κ, γ_F)

$$\gamma_F \equiv \frac{\kappa_\tau u_\tau}{\kappa_\sigma u_\sigma} , \qquad \frac{1}{\kappa} = \frac{1}{\kappa_\sigma u_\sigma} - 2(\gamma_F + 3r - 4) \quad (= 2(m_0\gamma_F + 4))$$

 γ_F : bare anisotropy parameter

 m_0 : bare quark mass (in units of $a_{ au}^{-1}$)

Anisotropic quark action

Expectation: for $m_Q \ll a_{ au}^{-1}$,

mass dependences of parameters are sufficiently small.

If this is the case, mass dependence of γ_F must be small. $\gamma_F: most \ significant \ parameter \ for \ relativity \ condition$ \Rightarrow Without tuning, i.e. setting to $\gamma_F(m_q = 0)$, heavy quark can be correctly described.

For heavy-light systems: actually hold ?

• Tree-level analysis — yes

 \circ In numerical simulation — yes, as shown below

Calibration of γ_F :

with meson dispersion relation

 γ_F at massless limit is used in the following simulation.

Numerical simulation

Simulation: on quenched anisotropic lattice of size $16^3 \times 128$, $a_{\sigma}^{-1} \simeq 1.6$ GeV and anisotropy $\xi = 4$. Quark parameters light quark: mass $\sim 1.5 m_s$ heavy quark: 7 values with $m_Q = 1 - 6$ GeV bare anisotropy: tuned value at massless limit ($\gamma_F = 4.016$)

Heavy-heavy, heavy-light meson dispersion relations

$$E(\vec{p})^2 = m^2 + \frac{\vec{p}^2}{\xi_F^2} + O(\vec{p}^4)$$

ightarrow fermionic anisotropy $\ \xi_F$

 $\xi_F \neq \xi$ signals breaking of relativity relation

 $\circ~m_q~<~0.3$: for heavy-light mesons, γ_F tuned for massless qaurk can be applied within 2% accuracy

- $\circ m_q < 0.2$: both heavy-heavy, heavy-light mesons are correctly described within 2% accuracy
 - $0.2 < m_q$: heavy quarkonia suffer from larger $O((ap)^2)$ error

Heavy-light meson decay constant (preliminary)

Simulation: quenched anisotropic lattices with $\xi = 4$, $\circ 16^3 \times 128$, $\beta = 5.95$, $a_{\sigma}^{-1} \simeq 1.6 \text{ GeV}$ $\circ 20^3 \times 160$, $\beta = 6.10$, $a_{\sigma}^{-1} \simeq 2.0 \text{ GeV}$ Light quark: 3 values with masses 1–1.5 m_s \rightarrow chiral extrapolation Heavy quark: 4 values with masses 0.7–1.5 GeV (target mass: charm quark)

Heavy-light pseudoscalar meson decay constant: • mean-field improved tree level matching

*Average of quenched works, S.Ryan, Nucl. Phys. B (PS) 106 (2002) 86. \Box Test of relativity relation:

For $a_{\sigma}m_Q < 1.2$, heavy-light systems are correctly described by $\gamma_F = \gamma_F(m_q = 0)$.

— mass dependence is actually small.

 \Rightarrow Tuned parameters for massless quark are expected to be applicable.

 \Box Decay constant of D meson:

— present calculation is for consistency check with other approaches at O(10%) level.

Outlook:

 \Box Improvement conditions for other parameters (c_B and c_E) e.g., consistency of dispersion relations, masses and splittings of other hadrons

 \rightarrow verify that $c(m_q = 0)$ suffices for heavy quark mass

□ Further development with $\gamma_F = \gamma_F(m_q = 0)$. • O(a) improvement by nonperturbative renormalization

- □ Mass dependent tuning for bottom quark region \circ Tree level γ_F may be a good approximation.
- \Box Applications to heavy-light matrix elements \rightarrow High precision computation actually possible ?

Conjecture of anisotropy parameter (appendix)

Conjecture of a_{σ} dependence of tuned anisotropy parameter (figures roughly at charm quark mass)

- $\circ a_{\sigma}^{hh-hl}$: above which heavy-heavy and heavy-light systems are inconsistent for single γ_F value.
- $\leftarrow O((a_{\sigma}p)^2) \text{ error in quarkonia, not improved by anisotropy}$ $\circ a_{\sigma}^{hl-ll} : \text{ below which } \gamma_F(m_q) \simeq \gamma_F(m_q = 0) \text{ holds,}$ $within certain (say, 2%) accuracy.}$

Below a_{σ}^{hl-ll} , $\gamma_F(m_q=0)$ correctly describes heavy-light systems.

In the following, we fix a_{σ} (\simeq 1.6 GeV), set γ_F to $\gamma_F(m_q=0)$, and study mass dependence of fermionic anisotropy ξ_F .

Tree level analysis (appendix)

$$E^{2} = M_{1}^{2} + \left(\frac{\xi^{\text{tree}}}{\xi_{F}^{\text{tree}}}\right)^{2} \vec{p}^{2} + A_{1}a_{\sigma}^{2}(\vec{p}^{2})^{2} + A_{2}a_{\sigma}^{2}\sum_{i}p_{i}^{4} + \cdots,$$

Inconsistency among binding energies of heavy-heavy, heavy-light, light-light mesons

$$I \equiv \frac{2\delta M_{hl} - (\delta M_{hh} + \delta M_{ll})}{2M_{2hl}}$$

 $\delta M = M_2 - M_1$ (kinetic mass - rest mass) $M_2 = rac{\xi_F^2}{\xi^2} M_1$

S. Collins et al., Nucl. Phys. B (PS) 47 (1996) 455
A. S. Kronfeld, Nucl. Phys. B (PS) 53 (1997) 401

For $a_{\sigma}M_{2hl} > 1$, inconsistency grows: same behavior as on isotropic lattice Similar behavior of I for Set-I and II \Rightarrow mass-dependent tuning does not improve I.

Hyperfine splitting of heavy-light meson vs kinatic meson mass inverse

Similar behavior for Set-I and II \Rightarrow consistent with Fermilab interpretation Small nonzero intercept: $O(a^2)$ error