Heavy-light meson in anisotropic lattice QCD

— Toward precision computation of heavy-light matrix elements —

<u>H. Matsufuru¹</u>, T. Onogi¹, A. Sugita² and J. Harada³

¹Yukawa Institute for Theoretical Physics, Kyoto University
 ²Research Center for Nuclear Physics, Osaka University
 ³Department of Physics, Hiroshima University

JPS annual meeting 2002 24–27 Mar 2002, Kusatsu, Shiga, Japan

Contents:

Introduction Anisotropic lattice QCD Anisotropic quark action Conjecture of anisotropy parameter Numerical simulation Conclusion and outlook Heavy-light decay constant (preliminary)

Refs.:

J. Harada et al., Phys. Rev. D 64 (2001) 074501.

H. Matsufuru, T. Onogi and T. Umeda, Phys. Rev. D 64 (2001) 114503.

J. Harada, H. Matsufuru, T. Onogi and A. Sugita, hep-lat/0202004.

J. Harada, H. Matsufuru, T. Onogi and A. Sugita, hep-lat/0203025.

This copy: http://www.rcnp.osaka-u.ac.jp/~matufuru/

Introduction

Recent experimental developments

• B factories (KEK/Belle, SLAC/BaBar, ...)

• Charm factory (CLEO-c project)

 \Rightarrow need precise theoretical predictions ($\simeq 2\%$)

Lattice QCD calculation of matrix elements

- nonperturbative
- errors can be systematically removed

However, for heavy quarks (charm and bottom), $m_Q \stackrel{>}{_\sim} a^{-1} \Rightarrow$ large $O(am_Q)$ error

We need a framework which has

- (i) continuum limit
- (ii) systematic improvement

such as Nonperturbative renormalization technique (for $m_q \simeq 0$)

(iii) modest size of computation

Previous approaches ($\sim 10\%$ systematic accuracy):

- a). Effective theories (NRQCD, etc) (i)× Thacker and Lepage, Phys. Rev. D 43 (1991) 196.
- b). Relativistic framework (iii) \times
- c). Fermilab approach (with/without mass dependent tuning) El-Khadra et al., Phys. Rev. D 55 (1997) 3933. Sroczynski, et al., Nucl. Phys. B (PS) 83 (2000) 971. — (ii)×

To achieve calculations with $\sim 2\%$ precision, we need yet another approach which satisfies above condition (i)–(iii). \Rightarrow our proposal: Anisotropic lattice Anisotropic lattice: $a_{\tau} < a_{\sigma} \Rightarrow$ Anisotropy $\xi = a_{\sigma}/a_{\tau}$ Quark action: O(a) improved, along with Fermilab approach \Box bare anisotropy parameter γ_F : in general, to be tuned mass dependently e.g., using meson dispersion relation \circ Continuum limit ? yes ! \odot \circ Modest computational cost ? yes ! \odot \circ Systematic improvement ? If quark mass is sufficiently less than a^{-1} , tuned parameters for massless quark are applicable. \rightarrow nonperturbative renormalziation technique $L \ddot{u}scher \ et \ al., \ Nucl.Phys. \ B \ 491 \ (1997) \ 323.$ Our expectation: For $m_Q \ll a_{\tau}^{-1}$, (not necessarily $m_Q \ll a_{\sigma}^{-1}$), mass dependences of parameters in the action is so small

that the tuned parameters for massless quark are also applicable in such a quark mass region.

Then, systematic improvement is possible. \bigcirc \Rightarrow To be justified numerically, and in perturbation theory.

If this is the case, mass dependence of γ_F must be small.

(Without tuning, i.e. setting to $\gamma_F(m_q=0)$,

heavy quark can be correctly described.)

For heavy-light systems: really hold ?

 \circ Tree-level analysis — yes

 \circ In numerical simulation — yes, as shown below

Quark action:

$$S_F = \sum_{x,y} \bar{\psi}(x) K(x,y) \psi(y)$$

$$K(x,y) = \delta_{x,y} - \kappa_{\tau} \left[(1 - \gamma_4) U_4(x) \delta_{x+\hat{4},y} + (1 + \gamma_4) U_4^{\dagger}(x - \hat{4}) \delta_{x-\hat{4},y} \right]$$
$$-\kappa_{\sigma} \sum_i \left[(r - \gamma_i) U_i(x) \delta_{x+\hat{i},y} + (r + \gamma_i) U_i^{\dagger}(x - \hat{i}) \delta_{x-\hat{i},y} \right]$$
$$-\kappa_{\sigma} c_E \sum_i \sigma_{4i} F_{4i}(x) \delta_{x,y} + r \kappa_{\sigma} c_B \sum_{i>j} \sigma_{ij} F_{ij}(x) \delta_{x,y}$$

T. Umeda et al., Int. J. Mod. Phys. A 16 (2001) 2215
J. Harada et al., Phys. Rev. D 64 (2001) 074501

- Constructed following the Fermilab approach. El-Khadra et al., Phys. Rev. D 55 (1997) 3933
- $r = 1/\xi$ (action retains explicit Lorentz invariant form) (cf. another choice r = 1 was adopted in several works.)
- Tadpole improvement: $c_E = 1/u_\sigma^2 u_\tau$, $c_B = 1/u_{\sigma^3}$ u_σ , u_τ : mean-field values of spatial and temporal link variables
- Parameters varied in simulations: (κ, γ_F)

$$\gamma_F \equiv \frac{\kappa_\tau u_\tau}{\kappa_\sigma u_\sigma} , \qquad \frac{1}{\kappa} = \frac{1}{\kappa_\sigma u_\sigma} - 2(\gamma_F + 3r - 4) \quad (= 2(m_0\gamma_F + 4))$$

 γ_F : bare anisotropy parameter

 m_0 : bare quark mass (in temporal lattice units)

At the tree level, with $r = 1/\xi$ and for small quark mass,

$$\frac{1}{\gamma_F} = \frac{1}{\xi} \left(1 + \frac{1}{3} m_0^2 \right).$$

— no linear term in m_0 for $m_0 \ll a_{\tau}^{-1}$.

Small mass dependence was also numerically found.

Matsufuru, Onogi and Umeda, Phys. Rev. D 64 (2001) 114503.

Conjecture of anisotropy parameter

Conjecture of a_{σ} dependence of tuned anisotropy parameter (figures roughly at charm quark mass)

- $\circ a_{\sigma}^{hh-hl}$: above which heavy-heavy and heavy-light systems are inconsistent for single γ_F value.
- $\leftarrow O((a_{\sigma}p)^2) \text{ error in quarkonia, not improved by anisotropy}$ $\circ a_{\sigma}^{hl-ll} : \text{ below which } \gamma_F(m_q) \simeq \gamma_F(m_q = 0) \text{ holds,}$ $within certain (say, 2%) accuracy.}$

Below a_{σ}^{hl-ll} , $\gamma_F(m_q = 0)$ correctly describes heavy-light systems. In the following, we fix a_{σ} ($\simeq 1.6 \text{ GeV}$), set γ_F to $\gamma_F(m_q=0)$, and study mass dependence of fermionic anisotropy ξ_F .

Numerical simulation

Simulation: on quenched anisotropic lattice of size $16^3 \times 128$, $a_{\sigma}^{-1} \simeq 1.6$ GeV and anisotropy $\xi = 4$. Quark parameters light quark: mass $\sim 1.5 m_s$ heavy quark: 7 values with $m_Q = 1 - 6$ GeV bare anisotropy: tuned value at massless limit ($\gamma_F = 4.016$)

Heavy-heavy, heavy-light meson dispersion relations

$$E(\vec{p})^2 = m^2 + \frac{\vec{p}^2}{\xi_F^2} + O(\vec{p}^4)$$

ightarrow fermionic anisotropy $\ \xi_F$

 $\xi_F \neq \xi$ signals breaking of relativity relation

 $\circ m_q < 0.2$: both heavy-heavy, heavy-light mesons are correctly described within 2% accuracy

 $\circ~m_q~<~0.3$: for heavy-light mesons, γ_F tuned for massless qaurk can be applied within 2% accuracy

Conclusion and outlook

Summary of numerical result:

on a lattice of $a_{\sigma}^{-1} = 1.6$ GeV and $\xi = 4$,

- (a) $a_{\sigma}m_Q < 0.8$: both heavy-heavy, heavy-light mesons are correctly described within 2% accuracy (charm quark mass is covered \odot)
- (b) $a_{\sigma}m_Q < 1.2$: for heavy-light mesons, γ_F tuned for massless qaurk can be applied within 2% accuracy
- (c) $1.2 < a_{\sigma}m_Q$, $O(a^2)$ systematic error gradually grows. \leftarrow inconsistency between ξ_F 's from PS and V mesons
- For $a_{\sigma}m_Q < 1.2$, heavy-light systems are correctly described by $\gamma_F = \gamma_F(m_q = 0)$.

mass dependence is actually small.

 \Rightarrow Tuned parameters for massless quark are expected to be applicable.

Outlook:

- \Box Further development with $\gamma_F = \gamma_F(m_q = 0)$.
 - $\circ O(a)$ improvement by nonperturbative renormalization
- □ Mass dependent tuning for bottom quark region \circ Tree level γ_F may be a good approximation.
- □ Applications to heavy-light matrix elements
 - \rightarrow High precision computation actually possible ?

Heavy-light meson decay constant (preliminary)

Simulation: quenched anisotropic lattices with $\xi = 4$, $\circ 16^3 \times 128$, $\beta = 5.95$, $a_{\sigma}^{-1} \simeq 1.6 \text{ GeV}$ $\circ 20^3 \times 160$, $\beta = 6.10$, $a_{\sigma}^{-1} \simeq 2.0 \text{ GeV}$ Light quark: 3 values with masses 1–1.5 m_s \rightarrow chiral extrapolation Heavy quark: 4 values with masses 0.7–1.5 GeV (target mass: charm quark)

Heavy-light pseudoscalar meson decay constant:

mean-field improved tree level matching

J. Harada et al., hep-lat/0202004

*Average of quenched works,

S.Ryan, Nucl. Phys. B (PS) 106 (2002) 86.