Spectral function with maximum entropy method on anisotropic lattice

<u>Takashi Umeda</u>, (CCP, Univ. Tsukuba) Hideo Matsufuru, (YITP, Kyoto Univ.)

JPS meeting 22–25 September 2001, Okinawa Int. Univ.

Introduction

Hadron properties at Finite Temperature:

What happens on hadrons

or what new effects above $T_{c}\ ?$

Quark Gluon Plasma formation

 \downarrow

• J/ ψ suppression above T_c Matsui and Satz (1986), Hashimoto et al (1986)

\bullet Mass shift near T_{c}

Hashimoto et al (1986)

Spectral Function at T > 0

from Maximum Entropy Method

Contents

1. Maximum Entropy Method 1-i: Outline of MEM

1-ii: Singular Value Decomposition

- 2. Approach for T > 0
- 3. Results
 - 3-i: Simulation parameters
 - 3-ii: Spectral function at T = 0
 - 3-iii: nt_{max} dependence
 - 3-iv: Spectral function at $\mathsf{T}>\mathsf{0}$
- 4. Discussion

Maximum Entropy Method (MEM) Reconstruction of a Spectral Function with MEM Asakawa et al. (1999) $\mathsf{C}(\tau) = \int \mathsf{d}\omega \mathsf{K}(\tau, \omega) \mathsf{A}(\omega)$ kernel : $\mathbf{K}(\tau, \omega) = \mathbf{e}^{-\omega\tau} + \mathbf{e}^{-\omega(\mathbf{T}-\tau)}$ standard χ^2 -fit \implies ill-posed problem \implies MEM (based on Bayes' theorem) Maximization of $Q = \alpha S - L$ $\mathsf{S} = \left[\mathsf{d}\omega(\mathsf{A}(\omega) - \mathsf{m}(\omega) - \mathsf{A}(\omega) \ln \frac{\mathsf{A}(\omega)}{\mathsf{m}(\omega)}) \right]$ $\mathbf{m}(\omega) = \mathbf{m}_0 \omega^2$: default model α : constant \Rightarrow to be integrated out L : Likelihood function (χ^2 -term)

Singular Value Decomposition (SVD) $K(\tau, \omega) = e^{-\omega\tau} + e^{-\omega(T-\tau)}$ $= V(\tau, \tau')w(\tau', \tau'')U(\omega, \tau'')^{t}$ $w(\tau, \tau') : \text{ diagonal matrix}$

$$\begin{split} \mathsf{A}(\omega) &= \mathsf{m}_0 \omega^2 \prod_{i=1}^{\mathsf{N}} \exp\left\{\mathsf{b}_i \mathsf{u}_i(\omega)\right\} \\ \mathsf{u}_i(\omega) \; (= \mathsf{U}(\omega,\tau_i)) : \text{ basis in singular space} \end{split}$$

b_i : parameters

⊳ Figure

- need for large N (fine temporal resolution)
- difficult to reconstruct

narrow peak at $\omega \gg 1$ wide peak at $\omega \ll 1$

6

Approach for Finite temperature(1)

- Large data points for reconstruction of $A(\omega)$ \implies Anisotropic lattice
- Restriction from SVD
 - High statistics
 - Shift of zero point $\omega \rightarrow \omega + dm$

$$e^{\mathsf{dm}\cdot\tau}\mathsf{C}(\tau) = \int \mathsf{d}\omega \ \mathsf{K}(\tau,\omega)\mathsf{A}'(\omega)$$
$$\implies \mathsf{A}(\omega) = \mathsf{A}'(\omega - \mathsf{dm})$$

(real*8 code works on heavy quarks)

• Check of nt_{max} dependence at T = 0 τ -range : $1 \sim nt_{max}$

Approach for Finite temperature(2) • Estimation for width of Spectral function Test with mock up data 150 • original image 100 50 150 • original image 100 50 15**0** • original image 100 50 0 0.2 0 0.1 0.3 ω

8

Simulation parameters

(Gauge parameters)

Anisotropic plaquette action $(a_{\sigma}/a_{\tau} = 4)$

Scale is determined from Sommer scale r₀

β	γ_{G}	size	a_{σ}^{-1} (GeV)
6.10	3.2108	$20^3 \times N_t$	2.030(13)
	Nt	T/T_{c}	conf.#
	160	~ 0	500
	32	~ 0.9	500
	26	~ 1.1	500

Quark parameters

O(a) improved Wilson quark action

Clover coefficients : Tadpole improved tree level

	κ	γ_{F}	quark mass
κ_{light}	0.1235	4.034	\sim strange quark
$\kappa_{\sf heavy}$	0.1120	4.000	\sim charm quark

Spectral function at T = 0

These are consistent with pole fit or previous works

Spectral function at $\mathsf{T}>\mathsf{0}$

Not correctly reconstructed at $\mathsf{T}>\mathsf{0}$

Discussion

It is difficult to reconstruct

a Spectral Function at T > 0 with MEM

▶ temporal resolution is enough

a_τ ~ 8GeV ⇒ 1/T_c ~ 28a_τ (N ≤ 14)

▶ larger statics is needed

present stat.= 500conf. ⇒ ??

▶ MEM works (nt_{max} · a_τ) ≳ 1fm

⇒ using smeared operators (?)

▶ Improvement of default model m(ω)