J/ψ at finite temperature - Lattice QCD result and potential model analysis

<u>Hideo Matsufuru</u>, (RCNP, Osaka Univ.), Osamu Miyamura (Dept.Physics, Hiroshima Univ.) Takashi Umeda (Dept.Physics, Hiroshima Univ.) Hideo Suganuma (Tokyo Inst. of Technology),

> Hadrons and Nuclei 20–22 Feb 2001, Seoul, Korea

Contents:

Introduction Our approaches Lattice Results Spatial correlation of Q and \bar{Q} Static quark potential Potential model approach Conclusion and Outlook

Introduction

 J/ψ (charmonium) states

important signal for fomation of quark-gluon-plasma (QGP)
 CERN 2000: "formation of QCD" in heavy ion experiment

c.f. NA50, Phys. Lett. B 477 (2000) 28

Theoretical understanding
□ Potential model

T. Hashimoto et al., Phys. Rev. Lett. 57 (1986) 2123 T. Matsui and H. Satz, Phys. Lett. B 178 (1986) 416 \Box Lattice QCD • Static potential M. Gao, Phys. Rev. D 41 (1990) 626 • Meson Correlators Spatial correlation of Q and \overline{Q} — T. Umeda et al. hep-lat/0011085 Spectral function \rightarrow Hatsuda's talk

We perform a combined study of lattice QCD and phenomenological approaches for definite understanding of charmonium properties.

Lattice QCD

- \circ directly founded on QCD
- \circ to obtain ingredients of phenomenological approaches
- ightarrowspatial correlation between Q and $ar{Q}$
- \rightarrow static quark potential

Phenomenological approaches

- \bullet Potential model with V(r) measured in lattice QCD
- Stationary state analysis T-dependence of bound state energy What is a condition of existence of bound state at $T > T_c$?
- Non-stationary state analysis (*in* progress) Time evolution governed by Schrödinger equation \rightarrow In which time scale Q and \overline{Q} desolve ?

In this stage, calculations are at the quaenched level of lattice QCD simulation ($N_f = 0$).

<u>Lattice QCD (1)</u>. Introduction

Lattice QCD: nonperturvative analysis founded on QCD

Discretization of (Euclidean) space-time with exact local gauge invariance →Path integral formalism has a well-defined meaning

 \Rightarrow Monte Carlo Method

At Finite Temperature lattice:

Lattice QCD (2): Setup

We employ the anisotropic lattice.

□ Lattice
Gauge field action: Anisotropic Symanzik (tree) action

$$16^2 \times 24 \times N_t$$
, $\beta = 4.56$, $\gamma = 3.45$,
in quenched approximation $(N_f = 0)$.
• Anisotropy: $\xi \equiv a_s/a_t = 3.95(2)$
• Cutoff: $a_{\sigma}^{-1}=1.61(1)$ GeV $(a_{\sigma} \sim 0.125 \text{ fm})$,
 $a_{\tau}^{-1}=6.36(5)$ GeV
 $T = 1/N_t a_t$
 $N_t = 96 (T \simeq 0)$, 28 (0.87 T_c), 26 (0.93 T_c),
20 (1.22 T_c) (for static potential),
16 (1.52 T_c) (for correlator analysis).

Quark action:

O(a) improved Wilson action on anisotropic lattice \rightarrow charm quark is treated in relativistic manner ($m_Q \ll a_{\tau}^{-1}$) Quark paramters are set to be roughly m_c .

Refs:

Umeda et al., hep-lat/0011085 (charmonium at T > 0) Matsufuru et al., hep-lat/0010071 and Proceedings of Confinement 2000, in press. (static quark potential) Meson Correlator:

$$G_M(\vec{x}, t) = \sum_{x, y_1, y_2} \omega_1(\vec{y}_1) \omega_2(\vec{y}_2)$$
$$\times \langle Tr[S(\vec{y}_1, 0; \vec{z}, t) \gamma_M \gamma_5 S^{\dagger}(\vec{y}_2, 0; \vec{z} + \vec{x}, t) \gamma_5 \gamma_M^{\dagger}] \rangle$$

 $\begin{array}{rl} S(\vec{x}_{1},t_{1};\vec{x}_{2},t_{2}): \mbox{ quark propagator} \\ \gamma_{M} \ = \ \gamma_{5} \ , \ \gamma_{1} \ , \ 1 \ , \ \gamma_{1}\gamma_{5} \\ (\ M \ = \ P_{S} \ , \ V \ , \ S \ , \ A \) \end{array}$

•Gauge fixing : Coulomb gauge

a, p are chosen to give appropriate size of meson.

Lattice QCD (4): Correlator analysis-2.

 \Box t-dependence of the wave function

$$w_{\Gamma}(r,t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}+\vec{r},t)\Gamma q(\vec{x},t)O^{\dagger}(0) \rangle$$

If there is no bound state (like free quark case), wave function becomes broader as t (Euclidean time).

Polyakov loop (order parameter of deconfining transition)

$$P(\vec{x}) = \operatorname{Tr} \prod_{t=0}^{N_{\tau}-1} U_4(\vec{x}, t)$$

Static quark potential

$$P_2(\vec{r}) = \langle P(0)P^{\dagger}(\vec{r})\rangle \simeq c \cdot \exp(-V_{Q\bar{Q}}(\vec{r})N_{\tau})$$

 \rightarrow Fit: $V(r) = \text{const.} - A/r + \sigma r$

N_{τ}	Т	Fit range	const.	A	σ	χ^2/N_{dof}
96	~ 0	$r \ge 2.8$	0.0587(49)	0.0587(49)	0.01781(29)	78.12/18
28	$0.87T_{c}$	$r \ge 2$	0.2817(70)	0.119 (11)	0.0089(11)	25.2/21
26	$0.93T_c$	$r \ge 2$	0.2934(41)	0.1253(63)	0.00638(69)	23.5/21

Lattice cutoffs: $a_{\sigma}^{-1} \simeq 1.6 \text{ GeV}$, $a_{\tau}^{-1} \simeq 6.4 \text{ GeV}$.

String tension slowly decreases toward T_c .

Fit (lattice unit):

range	const	A	μ	χ^2 / N_{dof}
all r	0.20755(88)	0.0469(15)	0.803(40)	5.29 / 24
$r \ge 2$	0.20794(87)	0.0217(33)	0.385(73)	1.03 / 21

Potential Model (1)

Schrödinger equation for stationary state (spin averaged):

$$\left(-\frac{\Delta}{2m_R} + V(x)\right)\psi(x) = E\psi(x)$$

 $(m_R: \text{ reduced mass})$

For S-state,

$$\left(-\frac{1}{2m_R}\frac{d^2}{dr^2} + V(r)\right)u(r) = Eu(r)$$

 $u(r) = r\psi_r(r), \ \psi_r(r)$: radial wave function

Solve this equation numerically with $V(\boldsymbol{x})$ measured in lattice simulation.

Potential V(r) from lattice data (fitted paramters):

$$V(r) = -\frac{A}{r} + \sigma r$$

charm quark mass $m_c \simeq 1.3$ GeV.

Fit of lattice data (physical unit):

Т	A	$\sigma \; [{ m GeV}]$
~ 0	0.24	0.18
$0.87T_{c}$	0.48	0.091
$0.93T_c$	0.50	0.066

Binding energy:

Precise determination of A is significant to obtain T-dependence of charmonium mass.

(present result is at preliminary level.)

Screened potential

$$V(r) = -A \frac{\exp(-\mu r)}{r}$$

At $T \simeq 1.22T_c$ (lattice data):

fit range	A	$\mu \; [\text{GeV}]$
all r	0.088	0.628
$r \ge 2$	0.188	1.288

(paramters strongly depends on the fit range)

For A = 0.088 and $m_Q = 1.3$ GeV, μ -dependence of binding energy:

Similar result for A = 0.188 and $m_Q = 1.3$ GeV — c and \bar{c} are not bound at this temperature. c.f Karsch, Mehr and Satz, Z. Phys. C 37 (1988) 617

Time-dependent Schrödinger equation:

$$i\frac{\partial}{\partial t}\psi(x) = \left(-\frac{\Delta}{2m_R} + V(x)\right)\psi(x)$$

— In which time scale, Q and \bar{Q} are well separated ?

To avoid singularity of Coulomb(-like) potential at $x \sim 0$, modified cylindrical coordinate is appropriate.

 $x = \xi^{2/3} \cos \phi, \quad y = \xi^{2/3} \sin \phi, \quad z = z$

Kono et al., J. Comput. Phys. 130 (1997) 148

— Work in progress.

Conclusion and Outlook

We investigated charmonium state from two points of view.

Lattice Results:

- Even above $T_c (T \simeq 1.5T_c)$, wave function shows qualitatively different behavior from the free quarks.
 - $\rightarrow Q$ - \overline{Q} strongly correlate even at $T \simeq 1.5T_c$ in the time scale of 1/T.
- Static quark potential was measured.

Potential model:

Stationary state problem was studied with the potential obtained in lattice simulation.

At $T \simeq 1.22T_c$, no bound state is formed for c and \bar{c} .

\Downarrow

Puzzling results

More studies are needed.

• Non-stationary state problem:

evolution of wave function along Schrödinger equation

Outlooks

- \circ Precise determination of potential is significant.
- Lattice simulation with $N_f > 0$
- \circ Charmonium spectroscopy in the potential model at T>0