Systematical Study of Octet and Decuplet Baryon Spectra in SU(3) Lattice QCD

Hadron & Nuclei, Seoul, Feb.21, 2001

N. Nakajima^a, H. Matsufuru^a, Y. Nemoto^b and H. Suganuma^c

^a RCNP, Osaka University
 ^bYITP, Kyoto University
 ^c Tokyo Institute of Technology

Contents

Introduction

■ Lattice QCD

- \Box Anisotropic Lattice
- \Box Hadron Correlator
- Numerical Results
- Summary & Outlook

Introduction

Systematical Study of Hadron Spectrum in Lattice QCD Simulation

 \square mass spectrum of several kinds of hadrons by CP-PACS, UK-QCD, *etc*.

CP-PACS Collaboration, *Phys. Rev. Lett.* **84**(2000)238 • Quenched Level Calculation

\bigcirc OUR AIM

Hadron physics based on QCD

Investigation of baryons properties

\bigcirc Mass difference

between Octet and Decuplet Baryons

• Nonrelativistic Quark Model

in One-Gluon Exchange Picture M. Oka and K. Yazaki, Prog. Theor. Phys. 66 (1981) 556; *ibid*.572

N. Oka and K. Yazaki, Prog. Theor. Phys. 66 (1981) 556; *ibid.* 572 N- Δ splitting is mainly due to spin-spin interaction

$$M_{\Delta} - M_N \propto \sum_{i < j} \frac{1}{\mathfrak{m}_i \mathfrak{m}_j}$$

 \mathfrak{m} : constituent quark mass

 \implies Mass difference decreases

with increasing quark masses.

• Lattice QCD

Quark mass is arbitrarily chosen

- Same behavior or not?

\bigcirc Structure of Negative Parity Baryon $\Lambda(1405)$

in terms of quarks

• $\Lambda(1405)$

$$L_{I,2S} = S_{0,1}, \ J^P = \frac{1}{2}$$

(a) $SU(3)_f$ - singlet *uds* state (qqq)

(b) $N\bar{K}$ bound state $(qqqq\bar{q})$

• Lattice QCD Using Quenched level calculation,

 \rightarrow quark-level constitution is clear

- 3 quark state or 5 quark state

- Flavor singlet

We investigate the flavor-singlet baryon spectrum with spin 1/2 and negative parity.

Anisotropic Lattice

Anisotropic lattice

Temporal lattice spacing a_{τ} is finer than spatial one a_{σ} .

\Box Advantage

• Extract detailed information

on the correlators in temporal direction

- Efficient for excited hadrons, etc.
 (for those correlators noise grows rapidly against signals of correlators)
- Keeping the size of lattice comparatively modest.

Lattice setup

■ Gauge Action

 \Box Anisotropic Wilson Gauge Action

Karsch, N.P.B205(1982)285

- \Box Lattice Size : $12^3 \times 96$ at Quenched Level
- \Box Lattice Parameters : $\xi=4,\,\beta=5.75$
- \Box Scale :

 $a_{\sigma}^{-1} \simeq 1 \text{GeV}$: Spatial $a_{\tau}^{-1} \simeq 4 \text{GeV}$: Temporal

String tension $\sqrt{\sigma} \sim 427 \text{MeV}$

Quark Action

 \Box Anisotropic O(a)-improved (Clover) Quark Action

Hadron Spectrum

Two-Point Correlator :

$$G_{H}(t) = \sum_{\vec{x}} \langle 0 | T \{ \mathcal{O}_{H}(x) \overline{\mathcal{O}}_{H}(0) \} | 0 \rangle$$

$$= \sum_{\vec{x}} \sum_{n} \langle 0 | T \{ \mathcal{O}_{H}(x) | n \rangle \langle n | \overline{\mathcal{O}}_{H}(0) \} | 0 \rangle$$

$$\sim e^{-m_{0}t} + \sum_{n \neq 0} e^{-m_{n}t}$$

$$\rightarrow e^{-m_{0}t} \quad \text{at large } t$$

 m_0 : Ground State Mass \mathcal{O}_H : Hadron Operator

Hadron Operators

- MESON Pseudoscalar Vector
- BARYON Octet Decuplet Singlet

 $\begin{array}{c} \epsilon_{abc}q_a(q_b^T C \gamma_5 q_c) \\ \epsilon_{abc}q_a(q_b^T C \gamma_k q_c) \\ \epsilon_{abc}\epsilon_{uds}q_a(q_b^T C \gamma_5 q_c) \end{array}$

 $\bar{q}_c \gamma_5 q_c$

 $\bar{q}_c \gamma_k q_c$

MESON

C: Charge Conjugation Matrix

BARYON

Correlators on the Lattice

 \square Meson

$$G_M(t) = c_M \left[e^{-tm_M} + e^{-(T-t)m_M} \right]$$

:Periodic Boundary Condition

 $\implies m_M$: meson mass

\Box Baryon

$$G_B(t) = (1 + \gamma_4) \left[c_{B^+} e^{-tm_{B^+}} + c_{B^-} b e^{-(T-t)m_{B^-}} \right] + (1 - \gamma_4) \left[c_{B^+} b e^{-(T-t)m_{B^+}} + c_{B^-} e^{-tm_{B^-}} \right] b = +1 : Periodic Boundary Conditionb = -1 : Antiperiodic Boundary Condition$$

Combination of correlators

with either boundary condition.

- m_{B^+} : Positive parity baryon mass
- m_{B^-} : Negative parity baryon mass

 \Longrightarrow

Numerical Results of Hadron Spectrum

Mesons \boxtimes Pseudoscalar $\pi(u\bar{d},\bar{u}d,\ldots), K(u\bar{s},\bar{u}s,\ldots),\ldots$ \boxtimes Vector $\rho(u\bar{u}, d\bar{d}), K^*(u\bar{s}, \ldots), \phi(s\bar{s})$ Baryons \Box Positive Parity Baryon \boxtimes Decuplet $\Delta(uuu,\ldots),\Sigma^*(uus,\ldots),\Xi^*(uss,\ldots),\Omega(sss)$ \boxtimes Octet $N(uud, udd), \Sigma(uus, \ldots), \Xi(uss, \ldots), \Lambda(uds)$ \boxtimes Singlet □ Negative Parity Baryon \boxtimes Decuplet \boxtimes Octet

 \boxtimes Singlet $\Lambda(uds) \rightarrow \Lambda(1405)$?

 \odot Result 1

• Octet and decuplet positive parity baryons

• Mass difference

 \circledcirc Result 2

• Flavor-Singlet Negative Parity Baryon

Octet and Decuplet Baryon spectra

- $\circ u,d$ -quark masses are zero in chiral limit
- \circ Scale and s-quark masses are determined by fitting the intercept to experimental data.

Mass Difference between Octet and Decuplet Baryons

• Octet-decuplet mass difference decreases as quark mass increases.

 \rightarrow consistent with the one-gluon-exchange

Λ baryons spectrum

We have calculated

- both particles (positive & negative parity); $P = \pm 1$
- \circ both singlet and octet ; Λ_1, Λ_8

```
• Mass of \Lambda_1(-1) is bigger than \Lambda(1405)
```

 \circ Degeneracy of $\Lambda_1(-1)$ and $\Lambda_8(-1)$

Summary & Outlook

Lattice QCD

Anisotropic Lattice O(a)-improved quark action Lattice size : $12^3 \times 96$, $\beta = 5.75$, $\xi = 4$

Light Hadron Spectrum

 $\Box \text{ Decuplet,Octet and Singlet Baryons} \\ \Box \text{ Positive Parity Baryons} \\ N, \Sigma, \Xi, \Lambda, \Delta, \Sigma^*, \Xi^*, \Omega \\ \end{bmatrix}$

 \Box Singlet & Octet A Baryons

 \boxtimes Mass Difference of Octet and Decuplet Baryon

• Behavior is consistent with OGE explanation.

 \implies determination of model parameters (future)

 \boxtimes Excited Hadron (Negative Parity Baryon), $\Lambda(1405)$

• Mass of $\Lambda_1(\frac{1}{2})$ is bigger than $\Lambda(1405)$.

• Degeneracy of $\Lambda_1(\frac{1}{2}^-)$ and $\Lambda_8(\frac{1}{2}^-)$

 \implies comparing with a 5 quark state (future)

 $(\rightarrow \text{full QCD calculation})$

 \implies need calculations on <u>finer lattices</u>

Calibration

 \Box Lattice Klein-Gordon Action for Meson Field

$$S = \sum_{x} \frac{1}{2\xi_F} \phi^{\dagger}(x) \left[-\xi_F^2 D_4^2 - \vec{D}^2 + m_0^2 \right] \phi(x),$$

where m_0 is in the unit of a_{σ} .

 \Box Dispersion Relation

Lattice setup Gauge Action

 \Box Anisotropic Wilson Gauge Action

Karsch, N.P.B205(1982)285

 \Box Lattice Size : $12^3\times96$ at Quenched Level

 \Box Parameters

Klassen, N.P.B533(1998)557 for $\xi = 4$, $(\beta, \gamma_G) = (5.75, 3.072)$

(1% level)

 \Box Scale Static Quark Potential (Wilson Loop)
 $\sqrt{\sigma} = 427~{\rm GeV}$

 $a_{\sigma}^{-1} = 1.000(8) \text{GeV}$ $a_{\tau}^{-1} \simeq 4 \text{GeV}$

 \Box Configuration

for Calibration (400) for Hadron Correlator (120)

Pseudo-Heat Bath

thermalization = 10000# separation = 2000

Quark Action

O(a)-improved Quark Action (Clover Quark Action)

$$S_F = \sum_{x,y} \bar{\psi}(x) K(x,y) \psi(y),$$

$$K(x,y) = \delta_{x,y} - \kappa_\tau \left\{ (1 - \gamma_4) U_4(x) \delta_{x+\hat{4},y} + (1 + \gamma_4) U_4^{\dagger}(x - \hat{4}) \delta_{x-\hat{4},y} \right\}$$

$$-\kappa_\sigma \sum_i \left\{ (r - \gamma_i) U_i(x) \delta_{x+\hat{i},y} + (r + \gamma_i) U_i^{\dagger}(x - \hat{i}) \delta_{x-\hat{i},y} \right\}$$

$$-\kappa_\sigma c_E \sum_i i \sigma_{4i} F_{4i}(x) \delta_{x,y} - r \kappa_\sigma c_B \sum_{ij} \frac{1}{2} \sigma_{ij} F_{ij}(x) \delta_{x,y}.$$

 \Box Hopping Parameters

$$\kappa_{\sigma} = \frac{1}{2(m_0 + \gamma_F + 3r)}$$
: spatial γ_F : bare anisotropy

$$\kappa_{\tau} = \gamma_F \kappa_{\sigma}$$
 : temporal

 \Box Wilson Parameter

$$r = \frac{1}{\xi}$$

$$\rightarrow \frac{1}{\kappa} = \frac{1}{\kappa_{\sigma}} - 2(\gamma_F + 3r - 4) = 2(m_0 + 4)$$

Chiral extrapolation in $\frac{1}{\kappa}$

 \Box Clover Coefficients $c_E = c_B = 1$, at tree level for $r = \frac{1}{\xi}$

Octet & Decuplet baryon spectra

We have calculated

- both particles (positive & negative parity); $P = \pm 1$
- \circ both singlet and octet

Pseudoscalar meson squard vs. quark mass

 $m_{\pi}^2 \sim m_q \; (\text{CHPT})$