Charmonium physics at finite temperature on the lattice

- <u>T. Umeda</u>, O. Miyamura , H. Matsufuru^(\star) and R. Katayama
 - Hiroshima Univ. (*) Osaka Univ. RCNP

Contents

- Introduction
- Lattice Gauge Theory
- Approach
- Results
- Summary& Outlook

Introduction

Finite temperature hadron properties:

What happens on hadrons or what new effects above T_c ?

Quark-Gluon plasma formation ↓

• J/ψ suppression above T_c Matsui and Satz (1986)

• Mass shift near T_c Hashimoto et al (1986)

We study the Charmonium (heavy quarkonium) at $T \ge 0$ \implies Lattice QCD is useful What is the Lattice QCD ?

Discretization of space-time (Euclidean space) with exact local gauge invariance

 \downarrow

Path integral formalism has a well-defined meaning

 \Rightarrow Monte Carlo Method

Finite Temperature lattice QCD

How efficient is the Lattice QCD ?

<u>Merits</u>

- Calculation by the first principle !
- \implies Available for non-perturbative calculation
 - phase transition
 - hadron mass
 - etc.

Demerits

- Finite volume
 - $-\operatorname{lt}$ is difficult to treat hadron gas .
- Without dynamical quarks

Our results is without dynamical quark.

We are planning to the full QCD

at KEK supercomputer on this March.

 \implies phase transition is first order.

What can the Lattice QCD predicts ?

Quark propagetors with interaction ($T \ge 0$)

\downarrow

Hadron correlator

- \implies hadron masses
 - Pole mass (temporal mass)
 - Screening mass (spatial mass) mass shift
- ⇒ wave function hadronic bound state
- ⇒ spectral function mass shift & width

2000 Extreme Condition Hadron

Problem

• Small d.o.f. in temporal direction \implies Anisotropic lattice $a_t < a_s$

• O(a) discretization error \implies Clover quark action

Heavy quark mass > lattice cutoff
 ⇒ Fermilab action

Short physical scale in temporal direction
 ⇒ Smearing for hadronic operator
 ⇒ Variational analysis

Anisotropic lattice

Need detailed information in temporal(temperature) direction \rightarrow Anisotropic Lattice

Karsch (1982)

Burgers, Karsch, Nakamura and Stamatescu (1988)

<u>Merit</u>

• Many degree of freedom in temporal direction for small computing power

Demerit

• Complicate analysis from a new parameter "anisotropy ξ "

Heavy quark action

Fermilab (Clover) action on Anisotropic lattice

$$S_F(\kappa_s, \gamma_F) = \sum_x \bar{q}(y) K[U](x, y) q(x)$$

$$K[U](x, y) = 1 - \kappa_s \sum_i \left[\left(\frac{1}{\xi} - \gamma_i \right) T_{+i} + \left(\frac{1}{\xi} + \gamma_i \right) T_{-i} \right]$$

$$- \kappa_t \left[(1 - \gamma_4) T_{+4} + (1 + \gamma_4) T_{-4} \right]$$

$$- \kappa_s \frac{1}{2\xi} c_B \vec{\Sigma} \cdot \vec{B} + \kappa_t \frac{1}{2\xi} c_E \vec{\alpha} \cdot \vec{E}$$

$$\begin{array}{rcl} \kappa_t &=& \gamma_F \kappa_s \\ c_B, c_E &: & \mathsf{Clover coefficients} \\ & & (\, \mathsf{Mean-field improved} \,) \\ T_{+\mu}(x,y) &=& U_{\mu}(x) \delta_{x+\hat{\mu},y} \\ T_{-\mu}(x,y) &=& U_{\mu}(x-\hat{\mu}) \delta_{x-\hat{\mu},y} \end{array}$$

Clover action:Sheikholeslami, Wohlert (1985) Fermilab action : El-Khadra, Kronfeld, Mackenzie (1997) c.f. Klassen hep-lat/9809174

Simulation parameters

Lattice: $12^3 \times N_t$, $\beta = 5.68$, $\gamma = 4.0$, quenched $N_t = 72$ ($T \simeq 0$), 20 ($T < T_c$), 16, 12 ($T > T_c$) : $T = 1/N_t a_t$ • #conf. = 60 • Anisotropy: $\xi \equiv a_s/a_t = 5.3(1)$ from the ratio of Wilson loops Engels, Karsch and Scheideler (1997), Klassen (1998) • Cutoff: $a_s^{-1} = 0.85(3)$ GeV, $a_t^{-1} = 4.5(2)$ GeV from heavy quark potential

Quark: Anisotropic Fermilab (Clover) action

• Hopping parameter and bare anisotropy:

κ	γ_F	m_{PS}	$m_V \ [GeV]$
0.0985	3.580	3.51(16)	3.56(16)
0.1032	3.670	3.04(13)	3.10(14)
0.1075	3.750	2.63(12)	2.70(12)
0.1159	3.867	1.91(09)	2.00(08)

- $\circ \gamma_F$ determined by calibration
- Periodic b. c. for spatial direction

Calibration

 \circ Anisotropy of heavy quark field : ξ_F $\xi_F = \xi (= 5.3(1))$

·Dispersion relation of free meson

$$\cosh (E(\vec{p})) = 1 + \frac{1}{2\xi^2} (\hat{\vec{p}}^2 + m^2)$$
$$\hat{p}_i = 2\sin p_i/2$$

Dispersion check

 $\xi_F = 5.3$ from free meson propagator I) Non-relativistic expansion

 $\xi_F \sim 5.5$

II) Mass ratio (* case of light quark)

$$\xi_F = \frac{m_s}{m_t}$$

κ	γ_F	m_{PS}	$m_V [GeV]$
0.1288	4.077	0.836(3)	1.015(5)

 $\xi_F = 5.52(12)$ from dispersion relation $\xi_F = 5.437(44)$ from mass ratio

Meson Correlator

$$\begin{split} G_{M}(\vec{x},t) &= \sum_{x,y_{1},y_{2}} \omega_{1}(\vec{y_{1}})\omega_{2}(\vec{y_{2}}) \\ \times \langle Tr[S(\vec{y_{1}},0;\vec{z},t)\gamma_{M}\gamma_{5}S^{\dagger}(\vec{y_{2}},0;\vec{z}+\vec{x},t)\gamma_{5}\gamma_{M}^{\dagger}] \rangle \\ S(\vec{x_{1}},t_{1};\vec{x_{2}},t_{2}): \text{ quark propagator} \\ \gamma_{M} &= \gamma_{5} , \ \gamma_{1} , \ 1 , \ \gamma_{1}\gamma_{5} \\ (M &= P_{S} , \ V , \ S \ , \ A \) \end{split}$$

◇Gauge fixing : Coulomb gauge

12

t-dependence of the wave function

$$w_{\Gamma}(r,t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}+\vec{r},t) \Gamma q(\vec{x},t) O^{\dagger}(0) \rangle$$

If there is no bound state (like free quark case), wave function becomes broader as t.

Effective mass

Effective mass : m_{eff} $\frac{G_M(\vec{x}=0,t)}{G_M(\vec{x}=0,t+1)} = \frac{\cosh\left[m_{\text{eff}}(N_t/2-t)\right]}{\cosh\left[m_{\text{eff}}(N_t/2-t-1)\right]}$

 \circ effective mass at T>0

Variational analysis

$$\mathcal{O}_1^{\dagger}|0\rangle = z_1|1'\rangle, \quad \mathcal{O}_2^{\dagger}|0\rangle = z_2|2'\rangle$$

 $|1'\rangle, |2'\rangle$ are linear combinations of $|1\rangle, |2\rangle$ Here $|1\rangle, |2\rangle$ are eigen states of Hamiltonian. In the numerical calculation,

In this talk, We used

- \mathcal{O}_1 : point-point
- \mathcal{O}_2 : point-exp
- \mathcal{O}_3 : exp-exp

Results of variational analysis (Preliminary!)

Pseudoscalar

Pseudoscalar

Summary

• We use the anisotropic Fermilab action for heavy quark system.

- About charmonium
 - wave function
 - hadron mass
 - effective mass
 - variational analysis

Outlook

- Improvement of hadronic operator
- Fine lattice
- Other channels : baryons etc.
- With dynamical quarks