Static Three Quark Potential in the Quenched Lattice QCD

Hideo Matsufuru, (RCNP, Osaka Univ.), Yukio Nemoto (YITP, Kyoto Univ.), Hideo Suganuma (Tokyo Inst. of Technology), Toru T. Takahashi (RCNP, Osaka Univ.), Takashi Umeda (Dept.Physics, Hiroshima Univ.)

> LATTICE 2000 17–22 Aug 2000, Bangalore, India

Contents:

Introduction Lattice Simulation (T = 0)c.f. hep-lat/0006005 At Finite Temperature

This copy is available at http://www.rcnp.osaka-u.ac.jp/~matufuru/

Introduction (1)

Static potential between quarks inside hadrons

 Q-Q system (~ meson)
 Well described with short range Coulomb term + long range confining linear term.

$$V(r) \simeq -\frac{A}{r} + \sigma r$$

String tension: $\sigma \simeq 1 \text{ GeV/fm}$

3Q system (~ baryon)
 Short range: two body Coulomb potential
 Long range - string picture

$$("Y-type" ansatz) \qquad ("\Delta-type" ansatz)$$
$$V_{3Q} = \sum_{(i,j)} V_{ij} + V_{123} \qquad V_{3Q} = \sum_{(i,j)} V'_{ij}$$

- \Box Flux tube picture prefers Y-type.
- L_{min} (minimum length of Y-type string) $\simeq \frac{1}{2} l_{\Delta}$ $(\frac{1}{2} l_{\Delta} \le l_{min} \le \frac{1}{\sqrt{3}} l_{\Delta})$ \Rightarrow classically Y-type configuration is more stable.
- Regge Pole analysis
 - \rightarrow Universality of string tension: $\sigma_{Q\bar{Q}} \simeq \sigma_{3Q}$
- \circ Strong coupling expansion
- Quark Models (Nonrelativistic/Relativistic)

e.g. Capstick and Isgur, PRD34(1986)2809:

$$H = \sum_{i} \sqrt{\vec{p}_{i}^{2} + m^{2}} - \sum_{(ij)} (V_{ij}^{Coulomb} + V_{ij}^{spin}) + \sigma L_{min}$$

well describes baryon spectra.

 Δ -type ansatz with $\sigma_{\Delta} \simeq \sigma/2$ also acceptable.

□ Lattice results

- (1) Sommer and Wosiek, PLB149(1984)497, NPB267(1986)531
- (2) Thacker, Eichten and Sexton, in Lattice'87
- (3) Kammesberger et al., in Proc. of "Few-Body Problems in Particle, Nuclear, Atomic and Molecular Physics" (1987) 529

Without smearing technique (ground satate enhancement) Not sufficiently large time separation

(4) Bali, hep-lat/0001312

(1),(2) and (4) claim that their data support Δ -type ansatz.

However, their data also seem to be consistent

with Y-type ansatz.

- Still not conclusive.

<u>Our Goals</u>

- (1) Extract 3 quark potential from lattice QCD simulation.
 o Determine the parameters A and σ nonperturbatively.
 o discuss which of Δ and Y type is appropriate picture.
- (2) Apply obtained result to phenomenological study.
 3-body potential →effective one-body potential
 Model calculation →baryon spectroscopy
- (3) T > 0 study
 - Near T_c , in confined/deconfined phase
 - \circ Universality of $\sigma_{Q\bar{Q}}$ and σ_{3Q} ?
 - Baryon spectra at T > 0 (model calculation)
 - Comparison with lattice calculation (c.f. Umeda's talk)

Lattice Simulation (1): Baryonic Wilson loop

Static potential (potential between infinitely heavy quarks) $\circ Q \cdot \overline{Q}$ potential \leftarrow Wilson loop

 $W(r,t)\equiv {\rm Tr}$

_

$$\longrightarrow c \cdot \exp\left[-V_{Q\bar{Q}}(r)t\right]$$
 as $t \to \infty$

• 3Q potential \leftarrow Baryonic Wilson loop: $W(\vec{r_1}, \vec{r_2}, \vec{r_3}, t) \equiv \frac{1}{3!} \epsilon_{abc} \epsilon_{a'b'c'} U_1^{aa'} U_2^{bb'} U_3^{cc'}$

$$\longrightarrow c' \cdot \exp\left[-V_{3Q}(\vec{r_1}, \vec{r_2}, \vec{r_3})t\right]$$
 as $t \to \infty$

In this limit, spatial path of links to connect three quark positions is unimportant.

Lattice Simulation (2): Simulation Parameters

 \Box Lattice

With standard Wilson action, in quenched approximation $\circ 12^3 \times 24$, $\beta = 5.7$ (#conf = 210) $a^{-1} \simeq 1.0 GeV$ (from static potential) $\circ 16^3 \times 32$, $\beta = 6.0$ (#conf = 60, preliminary) $a^{-1} \simeq 2.0 GeV$

Smearing – enhance the ground state contribution Iterate

— incorporate long range effect. $\alpha = 2.3$, 20 sweeps for $Q-\overline{Q} / 12$ sweeps for 3Q ($\beta = 5.7$) Position of 3 quarks:

Smearing: 12 sweeps

Fit:

$$V(\vec{r_1}, \vec{r_2}, \vec{r_3}) = \text{const.} - A\left(\frac{1}{r_{12}} + \frac{1}{r_{23}} + \frac{1}{r_{31}}\right) + \sigma l_{min}$$

Fit range	const.	А	σ	χ^2/N_{dof}
all r	0.9140(20)	0.1316(62)	0.1528(20)	51.9/13
c.f. Q - \overline{Q} $(r \ge 2)$	0.696(24)	0.395(35)	0.1561(38)	60.0/18

Lattice cutoff: $a^{-1} \simeq 1$. GeV

Well described by Y-type form $\sigma_{3Q} \simeq \sigma_{Q\bar{Q}}$: universality of string tension holds.

Smearing: 12 sweeps

Fit:

$$V(\vec{r_1}, \vec{r_2}, \vec{r_3}) = \text{const.} - A\left(\frac{1}{r_{12}} + \frac{1}{r_{23}} + \frac{1}{r_{31}}\right) + \sigma(r_{12} + r_{23} + r_{31})$$

Fit range	const.	A	σ	χ^2/N_{dof}
all r	0.934(20)	0.1405(60)	0.0858(15)	142./13
c.f. $Q - \overline{Q} \ (r \ge 2)$	0.696(24)	0.395(35)	0.1561(38)	60.0/18

Lattice cutoff: $a^{-1} \simeq 1$. GeV

Fit seems not so bad. $\sigma_{\Delta} \simeq \frac{1}{2} \sigma_{Q\bar{Q}}$ — No clear explanation. (color factor like as Coulomb term ?) $\circ \chi^2$ is much larger than Y-type fit.

Smearing: 42 sweeps (3Q) / 36 sweeps ($Qar{Q}$)

Fit	const.	A	σ	χ^2/N_{dof}
Y	0.933(12)	0.1203(46)	0.0475(14)	54.1/46
Δ	0.932(12)	0.1195(45)	0.02685(75)	25.9/46
$Q-\bar{Q}$ (on-axis)	0.6247(63)	0.2674(50)	0.0532(16)	0.51/3

Lattice cutoff: $a^{-1} \simeq 2$. GeV

We calculated the three quark potential with the baryonic Wilson loop, making use of smearing technique.

Which of Y- and Δ-type is appropriate description ?
□ Fit result at β = 5.7: χ² (Y-type)/N_{dof} = 51.9/13 = 3.99 χ² (Δ-type)/N_{dof} = 142./13 = 10.9 χ² (Q-Q; r>2)/N_{dof} = 60.0/18 = 3.33 (→guide of finite a effect) Y-type is preferable, but Δ-type is not strongly excluded.

□ String tension: $2\sigma(\Delta) \simeq \sigma(Y) \simeq \sigma_{Q\bar{Q}}$ - In the fit, this is because geometrically $l_{min} \simeq \frac{1}{2} l_{\Delta}$ roughly holds in most cases. $(\frac{1}{2} l_{\Delta} \le l_{min} \le \frac{1}{\sqrt{3}} l_{\Delta})$ String: nonperturbative picture

— Physical reason of $\frac{1}{2}$ is unclear.

Our conclusion: Y-type ansatz is better for numerical result, although Δ -type ansatz is not completely excluded yet.

 \Rightarrow Simulation at larger β ($\beta = 6.0$ is in progress)

Outlook

 \circ Precise results / extrapolation to the continuum limit \circ 4 quark system $(QQ\bar{Q}\bar{Q})$

– Difference of Y-type and Δ -type ansatz are more clear.

- \circ Excited states of string $\leftarrow Variational$ analysis
- With dynamical quarks String breaking effect

Finite temperature lattice QCD

We use anisotropic lattice:

 $a_{\sigma} > a_{\tau} \ (\xi \equiv a_{\sigma}/a_{\tau}: \text{ anisotropy})$ $N_{\sigma}a_{\sigma} \gg N_{\tau}a_{\tau} = 1/T$

Polyakov loop

$$P(\vec{x}) = \operatorname{Tr} \prod_{t=0}^{N_{\tau}-1} U_4(\vec{x})$$

 $-\langle P \rangle$ is the order parameter of deconfining transition Static quark potentials $\circ Q$ - \bar{Q} potential:

$$P_2(\vec{r}) = \langle P(0)P^{\dagger}(\vec{r}) \rangle \simeq c \cdot \exp(-V_{Q\bar{Q}}(\vec{r})N_{\tau})$$

 \circ 3Q potential:

$$P_{3}(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}) = \langle P(\vec{r}_{1}) P(\vec{r}_{2}) P(\vec{r}_{3}) \rangle$$

$$\simeq c' \cdot \exp(-V_{3Q}(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}) N_{\tau})$$

 \Box Lattice

Gauge field action: Anisotropic Symanzik (tree) action

 $16^{2} \times 24 \times N_{t}$, $\beta = 4.56$, $\gamma = 3.45$, quenched

• Cutoff:
$$a_{\sigma}^{-1}=1.61(1)$$
 GeV ($a_{\sigma} \sim 0.125$ fm),
 $a_{\tau}^{-1}=6.36(5)$ GeV

• Anisotropy: $\xi \equiv a_s/a_t = 3.95(2)$ (from the ratio of Wilson loops)

[Engels, Karsch and Scheideler (1997), Klassen (1998)]

 $N_t = 96 \ (T \simeq 0)$, 28, 26 $(T < T_c)$, 20 $(T > T_c)$: $T = 1/N_t a_t$

N_t	Т	# conf	observable	$\sqrt{\sigma_{Qar{Q}}} \left[MeV ight]$
96	$\simeq 0$	120	Wilson loop	420
28	$0.87T_{c}$	440	Polyakov loop	~ 300
26	$0.93T_{c}$	450	Polyakov loop	~ 260
20	$1.22T_{c}$	60	Polyakov loop	-

— Sum of two-quark (Q-Q) potential ? Well fitted to the form

$$V_{3Q} = \sum c \frac{\exp(-mr_{ij})}{r_{ij}}$$

 $V_{3Q}/3$ vs r_{ij} for equilateral triangle configuration \rightarrow Almost same behavior as Q- \overline{Q} system. \Box At $T > T_c$

We calculated the static three quark potential above T_c with equilateral constellations.

• Debye screening observed.

• $V_{3Q}/3$ shows almost same behavior as $Q\bar{Q}$ potential.

 \Box At $T < T_c$

3Q potential from Polyakov loop correlator suffer from large statistical fluctuations.

— More study is needed.

Smearing: 20 sweeps

Fit:

$$V(r) = \text{const.} - \frac{A}{r} + \sigma r$$

Fit range	const.	A	σ	χ^2/N_{dof}
on-axis	0.629 (16)	0.2793(12)	0.1629(47)	1.77/3
all r	0.6859(71)	0.3351(55)	0.1545(20)	341./ 21
$r \ge 2$	0.696 (24)	0.395(35)	0.1561(38)	$60.0/18 \sim 3$

Lattice cutoff: $a^{-1} \simeq 1$. GeV

 \circ Large χ^2 signals large $O(a^2)$ discretization effect (Rotationally symmetry is broken)