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Introduction (1)

Static potential between quarks inside hadrons

� Q-

�

Q system (� meson)

- Well described with short range Coulomb term

+ long range con�ning linear term.
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String tension: � ' 1 GeV/fm

� 3Q system (� baryon)

Short range: two body Coulomb potential

Long range - string picture

(\Y-type" ansatz) (\�-type" ansatz)
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Introduction (2)

2 Flux tube picture prefers Y -type.
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)classically Y-type con�guration is more stable.

� Regge Pole analysis

!Universality of string tension: �

Q

�

Q

' �

3Q

� Strong coupling expansion

� Quark Models (Nonrelativistic/Relativistic)

e.g. Capstick and Isgur, PRD34(1986)2809:
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well describes baryon spectra.

�-type ansatz with �

�

' �=2 also acceptable.

� Dual Ginzburg-Landau Theory (c.f. Koma's talk)

�-type ux tube corresponds to glueball.

2 Lattice results { support �-type ?

� Sommer and Wosiek, PLB149(1984)497, NPB267(1986)531

� Thacker, Eichten and Sexton, in Lattice'87

Without smearing technique (ground satate enhancement)

Not su�ciently latge time separation

� Bali, hep-lat/0001312

They claim that their data support �-type ansatz.

However, their data also seem to be consistent

with Y -type ansatz.

| Still not conclusive.



Our Goals

(1) Extract 3 quark potential from lattice QCD simulation.

� Determine the parameters � and � nonperturbatively.

� discuss which of � and Y type is appropriate picture.

(2) Apply obtained result to phenomenological study.

� 3-body potential !e�ective one-body potential

� Model calculation !baryon spectroscopy

(3) T > 0 study

{ Near T

c

, in con�ned/decon�ned phase

� Universality of �

Q

�

Q

and �

3Q

?

� Baryon spectra at T > 0 (model calculation)

� Comparison with lattice calculation (c.f. Umeda's talk)



Lattice Simulation (1): Baryonic Wilson loop

Static potential (potential between in�nitely heavy quarks)

� Q-

�

Q potential  Wilson loop

W (r; t) � Tr
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� 3Q potential  Baryonic Wilson loop:
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In this limit, spatial path of links to connect three quark

positions is unimportant.



Lattice Simulation (2): Simulation Parameters

2 Lattice

Action: standard Wilson action

12

3

� 24, � = 5:7 in quenched approximation

a

�1

= 1:0GeV (from static potential)

#conf = 210

Smearing { enhance the ground state contribution

Iterate

| incorporate long range e�ect.

� = 2:3, 20 sweeps for Q-

�

Q / 12 sweeps for 3Q

Position of 3 quarks:



Lattice Simulation (3): Q-

�

Q potential
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/NDF=16.2

Smearing: 20 sweeps

Fit:

V (r) = const.�

�
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Fit range const. � � �

2

=N

dof

all r 0.6859(71) 0.3351(55) 0.1545(20) 341./ 21

r � 2 0.696(24) 0.395(35) 0.1561(38) 60.0/18 � 3

Lattice cuto�: a

�1

' 1: GeV

� Large �

2

signals large O(a

2

) discretization e�ect

(Rotationally symmetry is broken)



Lattice Simulation (4): 3Q Potential
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σ =0.1528(27)
C=0.9140(20)

Smearing: 12 sweeps

Fit:
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Fit range const. � � �

2

=N

dof

all r 0.9140(20) 0.263(12) 0.1528(20) 51.9/13

c.f. Q-

�

Q (r � 2) 0.696(24) 0.395(35) 0.1561(38) 60.0/18

Lattice cuto�: a

�1

' 1: GeV

Well described by Y-type form
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: universality of string tension holds.



Lattice Simulation (5): � type ansatz
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Fit range const. � � �

2

=N

dof

all r 0.934(20) 0.281(12) 0.0858(15) 142./13

c.f. Q-

�

Q (r � 2) 0.696(24) 0.395(35) 0.1561(38) 60.0/18

Lattice cuto�: a

�1

' 1: GeV

Fit seems not so bad.
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| No clear explanation.

(color factor like as Coulomb term ?)

� �

2

is much larger than Y-type �t.



Lattice Simulation (6): Discussion

Which of Y - and �-type is appropriate description ?

2 Fit:

�

2

(Y -type)/N

dof

= 51.9/13 = 3.99

�

2

(�-type)/N

dof

= 142./13 = 10.9

wihch are compared with

�

2

(Q-

�

Q; r>2)/N

dof

= 60.0/18 = 3.33

!signals typical size of �nite a e�ect

Y -type is preferable, but �-type is not strongly excluded.

2 String tension:
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� Coulomb term: Factor

1

2

comes from the color factor

in perturbation (one gluon exchange).

� String: nonperturbative picture

{ No clear physical explanation of origin of

1

2

.

Our calculation:

Y -type ansatz is better for numerical result and physical reason,

although �-type ansatz is not completely excluded yet.



Lattice Simulation (7): Outlook

To distinguish the Y� and �-type ansatz clearly,

following analyses will work:

� 4 quark system (QQ

�

Q

�

Q)

{ Di�erence of Y -type and �-type ansatz are more clear.

� Scaling analysis by varying � ($ a), or using improved action.

{ De�ne the quantity which signals the deviation from

the �tting form and compare it at various a.

For physical applications,

� Precise results / extrapolation to the continuum limit

� Excited states of string

 Variational analysis

� With dynamical quarks

{ String breaking e�ect (c.f. Pennanen's talk)

� At �nite temperature ! next part.



At Finite Temperature (1): Polyakov Loop Correlators

Finite temperature lattice QCD

We use anisotropic lattice:
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At Finite Temperature (2): Simulation

2 Lattice

Gauge �eld action: Anisotropic Symanzik (tree) action

16

2

� 24�N

t

, � = 4:56,  = 3:45, quenched

� Cuto�: a

�1

�

=1:61(1) GeV (a

�

� 0:125 fm),

a

�1

�

=6:36(5) GeV

� Anisotropy: � � a

s

=a

t

= 3:95(2)

(from the ratio of Wilson loops)

[Engels, Karsch and Scheideler (1997), Klassen (1998)]

N

t

= 96 (T ' 0), 28, 26 (T < T

c

), 20 (T > T

c

) : T = 1=N
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p
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Q
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96 ' 0 120 Wilson loop 420

28 0:87T

c

440 Polyakov loop � 300

26 0:93T

c

450 Polyakov loop � 260

20 1:22T

c

60 Polyakov loop -



At Finite Temperature (3): Q-

�

Q Potential
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dof

96 r � 2:8 � 0 0.0587(49) 0.0587(49) 0.01781(29) 78.12/18

28 r � 2 0:87T

c

0.2817(70) 0.119 (11) 0.0089 (11) 25.2/21

26 r � 2 0:93T

c

0.2934(41) 0.1253(63) 0.00638(69) 23.5/21

Lattice cuto�s: a

�1

�

' 1:6 GeV, a

�1

�

' 6:4 GeV.

String tension slowly decreases toward T

c

.



At Finite Temperature (4): 3Q Potential
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� 3Q potential from Polyakov loop correlator su�er from

large statistical uctuations.

� Slope at large distance is consistent with Q-

�

Q case.



At Finite Temperature (5): Above T

c

0.0 2.0 4.0 6.0 8.0 10.0 12.0
−0.03

−0.02

−0.01

0.00

� Q-

�

Q system | Debye screening

V

Q
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Q

= V

singlet

+ V

octet

! c � exp(�mr)=r : Yukawa potential

[ Gao, PRD41(1990)626 ]

m � (electric) screening mass � 0.5-1 GeV

� 3Q system:

| Sum of two-quark (Q-Q) potential ?

Well �tted to the form
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ij

for equilateral triangle con�guration

!Almost same behavior as Q-

�

Q system.



At Finite Temperature (6): Summary

2 T > T

c

� Debye screening.

� V

3Q

!sum of two-body potential.

2 T < T

c

Three quark potentail from Polyakov loop correlator su�er from

large statistical uctuations.

Need more study !


