Lattice QCD Study of Three Quark Potential

Hideo Matsufuru, Yukio Nemoto, Hideo Suganuma, Toru T. Takahashi, (Research Center for Nuclear Physics, Osaka University) and
Takashi Umeda
(Department of Physics, Hiroshima University)
\section*{CONFINEMENT 2000}
7-10 Mar 2000, Osaka
\section*{Contents:}
Introduction
Our goals
Lattice Simulation ($T=0$)
Phenomenological Applications
At Finite Temperature

This copy is at http://www.rcnp.osaka-u.ac.jp/~matufuru/

Introduction (1)

Static potential between quarks inside hadrons

- $Q-\bar{Q}$ system (\sim meson)
- Well described with short range Coulomb term + long range confining linear term.

$$
V(r) \simeq-\frac{\alpha}{r}+\sigma r
$$

String tension: $\sigma \simeq 1 \mathrm{GeV} / \mathrm{fm}$

- 3Q system (\sim baryon)

Short range: two body Coulomb potential Long range - string picture

$$
\begin{array}{cc}
(\text { "Y-type" ansatz) } & (\text { " } \Delta \text {-type" ansatz }) \\
V_{3 Q}=\sum_{(i, j)} V_{i j}+V_{123} & V_{3 Q}=\sum_{(i, j)} V_{i j}^{\prime}
\end{array}
$$

Introduction (2)

\square Flux tube picture prefers Y-type.

- $l_{\text {min }}$ (minimum length of Y-type string) $\simeq \frac{1}{2} l_{\Delta}\left(\frac{1}{2} l_{\Delta} \leq l_{\text {min }} \leq \frac{1}{\sqrt{3}} l_{\Delta}\right)$ \Rightarrow classically Y -type configuration is more stable.
- Regge Pole analysis
\rightarrow Universality of string tension: $\sigma_{Q \bar{Q}} \simeq \sigma_{3 Q}$
- Strong coupling expansion
- Quark Models (Nonrelativistic/Relativistic)
e.g. Capstick and Isgur, PRD34(1986)2809:
$H=\sum_{i} \sqrt{\vec{p}_{i}^{2}+m^{2}}-\sum_{(i j)}\left(V_{i j}^{\text {Coulomb }}+V_{i j}^{s p i n}\right)+\sigma l_{\text {min }}$
well describes baryon spectra.
Δ-type ansatz with $\sigma_{\Delta} \simeq \sigma / 2$ also acceptable.
- Dual Ginzburg-Landau Theory (c.f. Koma's talk) Δ-type flux tube corresponds to glueball.
\square Lattice results - support Δ-type ?
- Sommer and Wosiek, PLB149(1984)497, NPB267(1986)531
- Thacker, Eichten and Sexton, in Lattice' 87

Without smearing technique (ground satate enhancement) Not sufficiently latge time separation

- Bali, hep-lat/0001312

They claim that their data support Δ-type ansatz. However, their data also seem to be consistent with Y-type ansatz.

- Still not conclusive.

Our Goals

(1) Extract 3 quark potential from lattice QCD simulation.

- Determine the parameters α and σ nonperturbatively. - discuss which of Δ and Y type is appropriate picture.
(2) Apply obtained result to phenomenological study. - 3-body potential \rightarrow effective one-body potential
- Model calculation \rightarrow baryon spectroscopy
(3) $T>0$ study
- Near T_{c}, in confined/deconfined phase
- Universality of $\sigma_{Q \bar{Q}}$ and $\sigma_{3 Q}$?
- Baryon spectra at $T>0$ (model calculation)
- Comparison with lattice calculation (c.f. Umeda's talk)

Lattice Simulation (1): Baryonic Wilson loop

Static potential (potential between infinitely heavy quarks) - $Q-\bar{Q}$ potential \leftarrow Wilson loop

$$
W(r, t) \equiv \operatorname{Tr}
$$

$$
\longrightarrow c \cdot \exp \left[-V_{Q \bar{Q}}(r) t\right] \quad \text { as } t \rightarrow \infty
$$

- $3 Q$ potential \leftarrow Baryonic Wilson loop:

$$
W\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, t\right) \equiv \frac{1}{3!} \epsilon_{a b c} \epsilon_{a^{\prime} b^{\prime} c^{\prime}} U_{1}^{a a^{\prime}} U_{2}^{b b^{\prime}} U_{3}^{c c^{\prime}}
$$

$$
\longrightarrow c^{\prime} \cdot \exp \left[-V_{3 Q}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) t\right] \quad \text { as } t \rightarrow \infty
$$

In this limit, spatial path of links to connect three quark positions is unimportant.

Lattice Simulation (2): Simulation Parameters

\square Lattice
Action: standard Wilson action
$12^{3} \times 24, \beta=5.7$ in quenched approximation
$a^{-1}=1.0 \mathrm{GeV}$ (from static potential)
$\#$ conf $=210$
Smearing - enhance the ground state contribution Iterate

- incorporate long range effect. $\alpha=2.3, \quad 20$ sweeps for $Q-\bar{Q} / 12$ sweeps for $3 Q$

Position of 3 quarks:

Lattice Simulation (3): $Q-\bar{Q}$ potential

Smearing: 20 sweeps
Fit:

$$
V(r)=\text { const. }-\frac{\alpha}{r}+\sigma r
$$

Fit range	const.	α	σ	$\chi^{2} / N_{\text {dof }}$
all r	$0.6859(71)$	$0.3351(55)$	$0.1545(20)$	$341 . / 21$
$r \geq 2$	$0.696(24)$	$0.395(35)$	$0.1561(38)$	$60.0 / 18 \sim 3$

Lattice cutoff: $a^{-1} \simeq 1 . \mathrm{GeV}$

- Large χ^{2} signals large $O\left(a^{2}\right)$ discretization effect
(Rotationally symmetry is broken)

Lattice Simulation (4): 3Q Potential

Smearing: 12 sweeps
Fit:

$$
V\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)=\text { const. }-\frac{\alpha}{2}\left(\frac{1}{r_{12}}+\frac{1}{r_{23}}+\frac{1}{r_{31}}\right)+\sigma l_{\min }
$$

Fit range	const.	α	σ	$\chi^{2} / N_{\text {dof }}$
all r	$0.9140(20)$	$0.263(12)$	$0.1528(20)$	$51.9 / 13$
c.f. $Q-\bar{Q}(r \geq 2)$	$0.696(24)$	$0.395(35)$	$0.1561(38)$	$60.0 / 18$

Lattice cutoff: $a^{-1} \simeq 1 . \mathrm{GeV}$
Well described by Y-type form
$\sigma_{3 Q} \simeq \sigma_{Q \bar{Q}}$: universality of string tension holds.

Lattice Simulation (5): Δ type ansatz Delta type

Smearing: 12 sweeps
Fit:
$V\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)=$ const. $-\frac{\alpha}{2}\left(\frac{1}{r_{12}}+\frac{1}{r_{23}}+\frac{1}{r_{31}}\right)+\sigma\left(r_{12}+r_{23}+r_{31}\right)$

Fit range	const.	α	σ	$\chi^{2} / N_{\text {dof }}$
all r	$0.934(20)$	$0.281(12)$	$0.0858(15)$	$142 . / 13$
c.f. $Q-\bar{Q}(r \geq 2)$	$0.696(24)$	$0.395(35)$	$0.1561(38)$	$60.0 / 18$

Lattice cutoff: $a^{-1} \simeq 1 . \mathrm{GeV}$
Fit seems not so bad.
$\sigma_{\Delta} \simeq \frac{1}{2} \sigma_{Q \bar{Q}}$ - No clear explanation.
(color factor like as Coulomb term ?)

- χ^{2} is much larger than Y-type fit.

Lattice Simulation (6): Discussion

Which of Y - and Δ-type is appropriate description?
\square Fit:

$$
\begin{aligned}
& \chi^{2}(Y \text {-type }) / N_{d o f}=51.9 / 13=3.99 \\
& \chi^{2}(\Delta \text {-type }) / N_{d o f}=142 . / 13=10.9
\end{aligned}
$$

wihch are compared with

$$
\begin{aligned}
\chi^{2}(Q-\bar{Q} & ; r>2) / N_{d o f}=60.0 / 18=3.33 \\
& \rightarrow \text { signals typical size of finite } a \text { effect }
\end{aligned}
$$

Y-type is preferable, but Δ-type is not strongly excluded.
\square String tension:

$$
\sigma(\Delta) \simeq \frac{1}{2} \sigma(Y) \simeq \frac{1}{2} \sigma_{Q \bar{Q}}
$$

- In the fit, this is because geometrically $l_{\min } \simeq \frac{1}{2} l_{\Delta}$ roughly holds in most cases. ($\frac{1}{2} l_{\Delta} \leq l_{\text {min }} \leq \frac{1}{\sqrt{3}} l_{\Delta}$)
- Coulomb term: Factor $\frac{1}{2}$ comes from the color factor in perturbation (one gluon exchange).
- String: nonperturbative picture
- No clear physical explanation of origin of $\frac{1}{2}$.

Our calculation:
Y-type ansatz is better for numerical result and physical reason, although Δ-type ansatz is not completely excluded yet.

Lattice Simulation (7): Outlook

To distinguish the Y - and Δ-type ansatz clearly, following analyses will work:

- 4 quark system ($Q Q \bar{Q} \bar{Q}$)
- Difference of Y-type and Δ-type ansatz are more clear.
- Scaling analysis by varying $\beta(\leftrightarrow a)$, or using improved action.
- Define the quantity which signals the deviation from the fitting form and compare it at various a.

For physical applications,

- Precise results / extrapolation to the continuum limit
- Excited states of string
\leftarrow Variational analysis
- With dynamical quarks
- String breaking effect (c.f. Pennanen's talk)
- At finite temperature \rightarrow next part.

At Finite Temperature (1): Polyakov Loop Correlators

Finite temperature lattice QCD
We use anisotropic lattice:

$$
\begin{gathered}
a_{\sigma}>a_{\tau}\left(\xi \equiv a_{\sigma} / a_{\tau}: \text { anisotropy }\right) \\
N_{\sigma} a_{\sigma} \gg N_{\tau} a_{\tau}=1 / T
\end{gathered}
$$

Polyakov loop

$$
P(\vec{x})=\operatorname{Tr} \prod_{t=0}^{N_{\tau}-1} U_{4}(\vec{x})
$$

$-\langle P\rangle$ is the order parameter of deconfining transition Static quark potentials

- $Q-\bar{Q}$ potential:

$$
P_{2}(\vec{r})=\left\langle P(0) P^{\dagger}(\vec{r})\right\rangle \simeq c \cdot \exp \left(-V_{Q \bar{Q}}(\vec{r}) N_{\tau}\right)
$$

- $3 Q$ potential:

$$
\begin{aligned}
P_{3}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) & =\left\langle P\left(\vec{r}_{1}\right) P\left(\vec{r}_{2}\right) P\left(\vec{r}_{3}\right)\right\rangle \\
& \simeq c^{\prime} \cdot \exp \left(-V_{3 Q}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) N_{\tau}\right)
\end{aligned}
$$

At Finite Temperature (2): Simulation

\square Lattice
Gauge field action: Anisotropic Symanzik (tree) action $16^{2} \times 24 \times N_{t}, \beta=4.56, \gamma=3.45$, quenched

- Cutoff: $a_{\sigma}^{-1}=1.61(1) \mathrm{GeV}\left(a_{\sigma} \sim 0.125 \mathrm{fm}\right)$, $a_{\tau}^{-1}=6.36(5) \mathrm{GeV}$
- Anisotropy: $\xi \equiv a_{s} / a_{t}=3.95(2)$
(from the ratio of Wilson loops)
[Engels, Karsch and Scheideler (1997), Klassen (1998)]
$N_{t}=96(T \simeq 0), 28,26\left(T<T_{c}\right), 20\left(T>T_{c}\right): \quad T=1 / N_{t} a_{t}$

N_{t}	T	\#conf	observable	$\sqrt{\sigma_{Q \bar{Q}}}[\mathrm{MeV}]$
96	$\simeq 0$	120	Wilson loop	420
28	$0.87 T_{c}$	440	Polyakov loop	~ 300
26	$0.93 T_{c}$	450	Polyakov loop	~ 260
20	$1.22 T_{c}$	60	Polyakov loop	-

At Finite Temperature (3): $Q-Q$ Potential

Fit:

$$
V(r)=\text { const. }-\frac{\alpha}{r}+\sigma r
$$

N_{τ}	T	Fit range	const.	α	σ	$\chi^{2} / N_{\text {dof }}$
96	$r \geq 2.8$	~ 0	$0.0587(49)$	$0.0587(49)$	$0.01781(29)$	$78.12 / 18$
28	$r \geq 2$	$0.87 T_{c}$	$0.2817(70)$	$0.119(11)$	$0.0089(11)$	$25.2 / 21$
26	$r \geq 2$	$0.93 T_{c}$	$0.2934(41)$	$0.1253(63)$	$0.00638(69)$	$23.5 / 21$
Lattice cutoffs: $a_{\sigma}^{-1} \simeq 1.6 \mathrm{GeV}, a_{\tau}^{-1} \simeq 6.4 \mathrm{GeV}$						

String tension slowly decreases toward T_{c}.

At Finite Temperature (4): 3Q Potential

- $3 Q$ potential from Polyakov loop correlator suffer from large statistical fluctuations.
- Slope at large distance is consistent with $Q-\bar{Q}$ case.

At Finite Temperature (5): Above T_{c}

- $Q-\bar{Q}$ system - Debye screening

$$
\begin{aligned}
& V_{Q \bar{Q}}=V_{\text {singlet }}+V_{\text {octet }} \\
& \quad \rightarrow c \cdot \exp (-m r) / r \quad \text { Yukawa potential }
\end{aligned}
$$

[Gao, PRD41(1990)626]
$m \sim$ (electric) screening mass $\sim 0.5-1 \mathrm{GeV}$

- 3Q system:
- Sum of two-quark $(Q-Q)$ potential ?

Well fitted to the form

$$
V_{3 Q}=\sum c \frac{\exp \left(-m r_{i j}\right)}{r_{i j}}
$$

$V_{3 Q} / 3$ vs $r_{i j}$ for equilateral triangle configuration \rightarrow Almost same behavior as $Q-\bar{Q}$ system.

At Finite Temperature (6): Summary

$\square T>T_{c}$

- Debye screening.
- $V_{3 Q} \rightarrow$ sum of two-body potential.
$\square T<T_{c}$
Three quark potentail from Polyakov loop correlator suffer from large statistical fluctuations.

Need more study!

