Lattice QCD Study of Three Quark Potential

<u>Hideo Matsufuru</u>, Yukio Nemoto, Hideo Suganuma, Toru T. Takahashi,

(Research Center for Nuclear Physics, Osaka University)

and

Takashi Umeda

(Department of Physics, Hiroshima University)

CONFINEMENT 2000 7–10 Mar 2000, Osaka

Contents:

Introduction Our goals Lattice Simulation (T = 0)Phenomenological Applications At Finite Temperature

This copy is at http://www.rcnp.osaka-u.ac.jp/~matufuru/

Introduction (1)

Static potential between quarks inside hadrons

 Q-Q system (~ meson)
 Well described with short range Coulomb term + long range confining linear term.

$$V(r) \simeq -\frac{\alpha}{r} + \sigma r$$

String tension: $\sigma \simeq 1 \text{ GeV/fm}$

 \circ 3Q system (~ baryon) Short range: two body Coulomb potential Long range - string picture

("Y-type" ansatz) ("
$$\Delta$$
-type" ansatz)
 $V_{3Q} = \sum_{(i,j)} V_{ij} + V_{123}$ $V_{3Q} = \sum_{(i,j)} V'_{ij}$

- \Box Flux tube picture prefers Y-type.
- l_{min} (minimum length of Y-type string) $\simeq \frac{1}{2} l_{\Delta}$ $(\frac{1}{2} l_{\Delta} \le l_{min} \le \frac{1}{\sqrt{3}} l_{\Delta})$ \Rightarrow classically Y-type configuration is more stable.
- Regge Pole analysis
 - \rightarrow Universality of string tension: $\sigma_{Q\bar{Q}} \simeq \sigma_{3Q}$
- \circ Strong coupling expansion
- Quark Models (Nonrelativistic/Relativistic)
 e.g. Capstick and Isgur, PRD34(1986)2809:

$$H = \sum_{i} \sqrt{\vec{p}_{i}^{2} + m^{2}} - \sum_{(ij)} (V_{ij}^{Coulomb} + V_{ij}^{spin}) + \sigma l_{min}$$

well describes baryon spectra.

 Δ -type ansatz with $\sigma_{\Delta} \simeq \sigma/2$ also acceptable.

- Oual Ginzburg-Landau Theory (c.f. Koma's talk)
 △-type flux tube corresponds to glueball.
- \Box Lattice results support Δ -type ?
- Sommer and Wosiek, PLB149(1984)497, NPB267(1986)531
- Thacker, Eichten and Sexton, in Lattice'87
 Without smearing technique (ground satate enhancement) Not sufficiently latge time separation
- Bali, hep-lat/0001312
- They claim that their data support Δ -type ansatz.

However, their data also seem to be consistent

with Y-type ansatz.

- Still not conclusive.

<u>Our Goals</u>

- (1) Extract 3 quark potential from lattice QCD simulation.
 o Determine the parameters α and σ nonperturbatively.
 o discuss which of Δ and Y type is appropriate picture.
- (2) Apply obtained result to phenomenological study.
 3-body potential →effective one-body potential
 Model calculation →baryon spectroscopy
- (3) T > 0 study
 - Near T_c , in confined/deconfined phase
 - \circ Universality of $\sigma_{Q\bar{Q}}$ and σ_{3Q} ?
 - Baryon spectra at T > 0 (model calculation)
 - Comparison with lattice calculation (c.f. Umeda's talk)

Lattice Simulation (1): Baryonic Wilson loop

Static potential (potential between infinitely heavy quarks) $\circ Q \cdot \overline{Q}$ potential \leftarrow Wilson loop

 $W(r,t)\equiv {\rm Tr}$

_

$$\longrightarrow c \cdot \exp\left[-V_{Q\bar{Q}}(r)t\right]$$
 as $t \to \infty$

◦ 3Q potential ← Baryonic Wilson loop: $W(\vec{r_1}, \vec{r_2}, \vec{r_3}, t) \equiv \frac{1}{3!} \epsilon_{abc} \epsilon_{a'b'c'} U_1^{aa'} U_2^{bb'} U_3^{cc'}$

$$\longrightarrow c' \cdot \exp\left[-V_{3Q}(\vec{r_1}, \vec{r_2}, \vec{r_3})t\right]$$
 as $t \rightarrow \infty$

In this limit, spatial path of links to connect three quark positions is unimportant.

Lattice Simulation (2): Simulation Parameters

 \Box Lattice

Action: standard Wilson action $12^3 \times 24$, $\beta = 5.7$ in quenched approximation $a^{-1} = 1.0 GeV$ (from static potential) #conf = 210

Smearing – enhance the ground state contribution Iterate

— incorporate long range effect. $\alpha = 2.3$, 20 sweeps for Q- \bar{Q} / 12 sweeps for 3Q

Position of 3 quarks:

Smearing: 20 sweeps

Fit:

$$V(r) = \text{const.} - \frac{\alpha}{r} + \sigma r$$

Fit range	const.	α	σ	χ^2/N_{dof}
all r	0.6859(71)	0.3351(55)	0.1545(20)	341./ 21
$r \ge 2$	0.696(24)	0.395(35)	0.1561(38)	$60.0/18 \sim 3$

Lattice cutoff: $a^{-1} \simeq 1$. GeV

 \circ Large χ^2 signals large $O(a^2)$ discretization effect (Rotationally symmetry is broken)

Smearing: 12 sweeps

Fit:

$$V(\vec{r}_1, \vec{r}_2, \vec{r}_3) = \text{const.} - \frac{\alpha}{2} \left(\frac{1}{r_{12}} + \frac{1}{r_{23}} + \frac{1}{r_{31}} \right) + \sigma l_{min}$$

Fit range	const.	α	σ	χ^2/N_{dof}
all r	0.9140(20)	0.263(12)	0.1528(20)	51.9/13
c.f. Q - \overline{Q} $(r \ge 2)$	0.696(24)	0.395(35)	0.1561(38)	60.0/18

Lattice cutoff: $a^{-1} \simeq 1$. GeV

Well described by Y-type form $\sigma_{3Q} \simeq \sigma_{Q\bar{Q}}$: universality of string tension holds.

$\frac{\text{Lattice Simulation (5): } \Delta \text{ type ansatz}}{\text{Delta type}}$

Smearing: 12 sweeps

Fit:

$V(\vec{r_1}, \vec{r_2}, \vec{r_3}) = \text{const.} - \frac{\alpha}{2} \left(\frac{1}{r_{12}} + \frac{\alpha}{r_{13}} \right)$	$\frac{1}{r_{23}}$ +	$\left(-\frac{1}{r_{31}}\right) + \sigma(r_{12} + r_{23} + r_{31})$
---	----------------------	---

Fit range	const.	α	σ	χ^2/N_{dof}
all r	0.934(20)	0.281(12)	0.0858(15)	142./13
c.f. Q - \overline{Q} $(r \ge 2)$	0.696(24)	0.395(35)	0.1561(38)	60.0/18

Lattice cutoff: $a^{-1} \simeq 1$. GeV

Fit seems not so bad. $\sigma_{\Delta} \simeq \frac{1}{2} \sigma_{Q\bar{Q}} \quad - \text{ No clear explanation.}$ (color factor like as Coulomb term ?) $\circ \chi^2$ is much larger than Y-type fit. Which of Y- and Δ -type is appropriate description ? \Box Fit:

$$\chi^2 \ (Y ext{-type})/N_{dof} = 51.9/13 = 3.99 \ \chi^2 \ (\Delta ext{-type})/N_{dof} = 142./13 = 10.9$$

$$\chi$$
 (Δ -type)/ N_{dof} - 142.

wihch are compared with

$$\chi^2 \; (Q - \bar{Q}; r > 2) / N_{dof} = 60.0 / 18 = 3.33$$

 \rightarrow signals typical size of finite a effect

Y-type is preferable, but $\Delta\text{-type}$ is not strongly excluded.

\Box String tension:

 $\sigma(\Delta) \simeq \frac{1}{2}\sigma(Y) \simeq \frac{1}{2}\sigma_{Q\bar{Q}}$

- In the fit, this is because geometrically $l_{min} \simeq \frac{1}{2} l_{\Delta}$ roughly holds in most cases. $(\frac{1}{2} l_{\Delta} \le l_{min} \le \frac{1}{\sqrt{3}} l_{\Delta})$
- Coulomb term: Factor $\frac{1}{2}$ comes from the color factor in perturbation (one gluon exchange).
- String: nonperturbative picture

– No clear physical explanation of origin of $\frac{1}{2}$.

Our calculation:

Y-type ansatz is better for numerical result and physical reason, although $\Delta\text{-type}$ ansatz is not completely excluded yet.

Lattice Simulation (7): Outlook

- To distinguish the Y- and Δ -type ansatz clearly, following analyses will work:
- \circ 4 quark system ($QQar{Q}ar{Q})$
 - Difference of Y-type and $\Delta\text{-type}$ ansatz are more clear.
- \circ Scaling analysis by varying β ($\leftrightarrow a$), or using improved action.
 - Define the quantity which signals the deviation from the fitting form and compare it at various a.

For physical applications,

- \circ Precise results / extrapolation to the continuum limit
- \circ Excited states of string

 $\leftarrow Variational \ analysis$

- \circ With dynamical quarks
 - String breaking effect (c.f. Pennanen's talk)
- At finite temperature \rightarrow next part.

Finite temperature lattice QCD

We use anisotropic lattice:

 $a_{\sigma} > a_{\tau} \ (\xi \equiv a_{\sigma}/a_{\tau}: \text{ anisotropy})$ $N_{\sigma}a_{\sigma} \gg N_{\tau}a_{\tau} = 1/T$

Polyakov loop

$$P(\vec{x}) = \operatorname{Tr} \prod_{t=0}^{N_{\tau}-1} U_4(\vec{x})$$

 $-\langle P \rangle$ is the order parameter of deconfining transition Static quark potentials $\circ Q$ - \bar{Q} potential:

$$P_2(\vec{r}) = \langle P(0)P^{\dagger}(\vec{r}) \rangle \simeq c \cdot \exp(-V_{Q\bar{Q}}(\vec{r})N_{\tau})$$

 \circ 3Q potential:

$$P_{3}(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}) = \langle P(\vec{r}_{1}) P(\vec{r}_{2}) P(\vec{r}_{3}) \rangle$$

$$\simeq c' \cdot \exp(-V_{3Q}(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}) N_{\tau})$$

 \Box Lattice

Gauge field action: Anisotropic Symanzik (tree) action

 $16^{2} \times 24 \times N_{t}$, $\beta = 4.56$, $\gamma = 3.45$, quenched

• Cutoff:
$$a_{\sigma}^{-1}=1.61(1)$$
 GeV ($a_{\sigma} \sim 0.125$ fm),
 $a_{\tau}^{-1}=6.36(5)$ GeV

• Anisotropy: $\xi \equiv a_s/a_t = 3.95(2)$ (from the ratio of Wilson loops)

[Engels, Karsch and Scheideler (1997), Klassen (1998)]

 $N_t = 96 \ (T \simeq 0)$, 28, 26 $(T < T_c)$, 20 $(T > T_c)$: $T = 1/N_t a_t$

N_t	Т	#conf	observable	$\sqrt{\sigma_{Qar{Q}}} \ [MeV]$
96	$\simeq 0$	120	Wilson loop	420
28	$0.87T_{c}$	440	Polyakov loop	~ 300
26	$0.93T_{c}$	450	Polyakov loop	~ 260
20	$1.22T_{c}$	60	Polyakov loop	-

Fit:

$$V(r) = \text{const.} - \frac{\alpha}{r} + \sigma r$$

N_{τ}	Т	Fit range	const.	α	σ	χ^2/N_{dof}
96	$r \ge 2.8$	~ 0	0.0587(49)	0.0587(49)	0.01781(29)	78.12/18
28	$r \ge 2$	$0.87T_{c}$	0.2817(70)	0.119 (11)	0.0089(11)	25.2/21
26	$r \ge 2$	$0.93T_{c}$	0.2934(41)	0.1253(63)	0.00638(69)	23.5/21

Lattice cutoffs: $a_{\sigma}^{-1} \simeq 1.6 \text{ GeV}$, $a_{\tau}^{-1} \simeq 6.4 \text{ GeV}$.

String tension slowly decreases toward T_c .

- $\circ~3Q$ potential from Polyakov loop correlator suffer from large statistical fluctuations.
- \circ Slope at large distance is consistent with $Q\text{-}\bar{Q}$ case.

— Sum of two-quark (Q-Q) potential ? Well fitted to the form

$$V_{3Q} = \sum c \frac{\exp(-mr_{ij})}{r_{ij}}$$

 $V_{3Q}/3$ vs r_{ij} for equilateral triangle configuration \rightarrow Almost same behavior as Q- \overline{Q} system. $\Box T > T_c$

• Debye screening.

 $\circ V_{3Q} \rightarrow$ sum of two-body potential.

 $\Box T < T_c$

Three quark potentail from Polyakov loop correlator suffer from large statistical fluctuations.

Need more study !