Lattice study of mesons near deconfining transition

Hideo Matsufuru (Hiroshima Univ.) for QCD-TARO Collaboration

23 March 1999 Workshop on Hadron Physics Hiroshima Univ. (Higashi-Hiroshima)

- CONTENTS -

Introduction Our Approach and Strategy Lattice Setup Results of Simulation: (1) *t*-correlators (2) Wave functions Summary and Outlook

The QCD-TARO Collaboration

Ph. de Forcrand^a, M. García Pérez^b, T. Hashimoto^c, S. Hioki^d, H. Matsufuru^e, O. Miyamura^e, A. Nakamura^f, I.-O. Stamatescu^{g,h}, T. Takaishiⁱ and T. Umeda^e

- ^a SCSC, ETH-Zürich, Switzerland
- ^b Dept. Física Teórica, Univ. Autónoma de Madrid, Spain
- ^c Dept. Appl. Phys., Fac. Engineering, Fukui Univ., Japan
- d Dept. of Physics, Tezukayama Univ., Nara, Japan
- ^e Dept. of Physics, Hiroshima Univ., Japan
- ^f Res. Inst. for Inform. Sci. and Education, Hiroshima Univ., Japan
- ^g Inst. Theor. Physik, Univ. of Heidelberg, Germany
- ^h FEST, Heidelberg, Germany
- i Hiroshima University of Economics, Japan

Physical goals:

- Finite Temperature QCD
- Finite Chemical Potential
- MCRG and Improved Actions

Introduction

Finite temperature hadron properties:

Change of masses and width near T_c What happens on hadrons or what new effect

above T_c ?

Example of effective theory:
NJL model analysis
c.f. Hatsuda and Kunihiro, Phys. Rep. 247 (1994) 221
Mean-field theory

- $N_f = 2 + 1$
- \circ Abobe T_c : Soft modes

Figure

Lattice QCD

Euclidean 4-D lattice

- \circ Gauge field: link var. $U_{\mu}(x) \sim e^{-igA_{\mu(x)}}$ \circ Quark field: $\bar{\psi}(x)$, $\psi(x)$

Monte Carlo integration

At finite temperature:

$$\circ \; N_s \gg N_t$$
, $T=1/N_t a$

- Boundary condition
 - boson: periodic
 - fermion: anti-periodic

Lattice Results

At $T > T_c$:

 Spatial correlators (↔ Screening masses) Correlation in π, σ sectors is large ? Weak in other sectors (~ free quarks) Born et al. (1991) (N_f = 4)
 No bosonic pole Gupta (1992) (quenched: N_f = 0)

• Baryon number susceptibility Large, $\chi_S \sim \chi_{NS}$ (isosinglet and nonsinglet) \Rightarrow Fundamental excitations are quarks ? Gottlieb et al. (1987) ($N_f = 2$)

- Temporal correlators (\leftrightarrow Pole masses)
 - Temperature Green function

correlator in Euclidean time direction
 On anisotropic lattice

Hashimoto, Nakamura and Stamatescu (1993)

Our Approach

From correlators in Euclidean time direction;

- Pole masses (compared with screening masses)
- $\circ~$ Wave function
- Spectral function

Need detailed information in t- (temperature) direction

 \Rightarrow Anisotropic lattice

[Karsch (1982),

Burgers, Karsch, Nakamura and Stamatescu (1988)]

This work:

- coarse lattice, $(a_s^{-1} = 0.85 \text{ GeV})$
- unimproved actions
- \longrightarrow Qualitative result, Development of procedures

Strategy

Difficulty: Mass is extracted at $t \gg 1$. However, at T > 0, temporal extent is short. \Rightarrow Choice of hadronic operator is significant.

Investigate following questions.

- (1) Define the "hadronic operator" as one which has sufficiently large overlap with corresponding states. Then, what happens on this operator at T > 0 ?
- (2) Is there bound state at $T > T_c$? Haw can we show that ?
- (3) Develop reliable proceedure to extract the pole masses with short extent in t-direction.

Simulation Parameters

Lattice: $12^3 \times N_t \ \beta = 5.68, \ \gamma = 4.0, \ \text{quenched}$ $N_t = 72 \ (T \simeq 0), \ 20 \ (T < T_c), \ 16, \ 12 \ (T > T_c) : T = 1/N_t a_t$ $\circ \ \# \text{conf.} = 60$ $\circ \ \text{Anisotropy:} \ \xi \equiv a_s/a_t = 5.3(1)$ from the ratio of Wilson loops Engels, Karsch and Scheideler (1997), Klassen (1998) $\circ \ \text{Cutoff:} \ a_s^{-1} = 0.85 \ \text{GeV}, \ a_t^{-1} = 4.5(2) \ \text{GeV}$ from heavy quark potential

- Quark: Anisotropic Wilson action
- Hopping parameter and bare anisotropy:

κ_s	γ_F	m_q	m_{PS}	$m_V \ [GeV]$
0.0810	4.05	0.17	0.81	0.90
0.0840	3.89	0.12	0.68	0.80
0.0860	3.78	0.10	0.61	0.75

- $\circ \gamma_F$ determined by calibration
- Periodic b. c. for spatial direction

Correlators

Measure the wave function

$$w_{\Gamma}(r,t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}+\vec{r},t) \Gamma q(\vec{x},t) O_{\Gamma}^{\dagger} \rangle$$

where,

$$O_{\Gamma}(y) = ar{q}^{(arphi')}(y)\Gamma q^{(arphi)}(y), \ q^{(arphi)}(y) = \sum_{ec{r}} arphi(ec{r})q(ec{y}+ec{r},y_4)$$

 Γ : γ_5 (Ps), γ_1 (V), 1 (S), $\gamma_1\gamma_5$ (A) $\varphi(\vec{r})$: smearing function We use "exp" smearing function:

$$\varphi(\vec{r}) = \exp(-ar^p)$$

with a, p extracted from observed wave function as well as "point" source: $\varphi(\vec{r}) = \delta_{\vec{r},0}$.

Smearing Function

"exp" smearing function: $(o(\vec{m}) = our)($

$$\varphi(\vec{r}) = \exp(-ar^p)$$

 \rightarrow "exp-exp" source smearing corresponds to the convolution of two $\varphi(r)$

$$arphi^{(2)}(ec{r}) = \int d^3x arphi(ec{r}+ec{x})arphi(ec{r})$$

$$\kappa_s = 0.081 \ (m_q \sim 2m_s)$$

t-correlators

Correlators in Euclidean time direction:

$$C_{\Gamma}(t) = w(\vec{r} = 0, t) = \sum_{\vec{x}} \langle O_{\Gamma}(\vec{x}, t) O_{\Gamma}^{(\varphi)\dagger}(0, 0) \rangle$$

Effective mass: $m^{(eff)}$ s.t.

$$\frac{C(t)}{C(t+1)} = \frac{\cosh[m^{(eff)}(N_t/2 - t)]}{\cosh[m^{(eff)}(N_t/2 - t - 1)]}$$

For large $t,\ m^{(eff)} \rightarrow m_{\Gamma}$

Problem at finite temperature:

- \circ Temporal extent is not enough for $m^{(eff)} \rightarrow m_{\Gamma}$
- Even in free quark case, ficticious plateau is observed

Effective Mass Plots at $N_t = 72$

 $\kappa_s = 0.081 \ (m_q \sim 0.17 GeV)$

Effective Mass Plots at T > 0

At $N_t = 72$, "exp-exp" correlators almost have required property: large overlap with meson states. In the following analysis, "exp-exp" correlators are used.

Large qualitative change at $T > T_c$ Chiral symmetry restoration (?)

Answer to (1)

At $N_t = 72$, "exp-exp" correlator almost have required property: large overlap with meson states

(More detailed analysis — e.g. Variational analysis) $\downarrow\downarrow$

Observe the temperature dependence of them:

"masses" extracted from exp-exp correlators

(assuming the existence of bound states even above T_c)

At finite temperature,

 correlators with various sources do not give the same effective mass
 Difficult to find clear plateau Uncertainty of extracted "mass" values are large (20-30 %)

Temperature dependence of "masses"

t-dependence of the wave function

$$w_{\Gamma}(r,t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}+\vec{r},t) \Gamma q(\vec{x},t) O^{\dagger}(0) \rangle$$

If there is no bound state (like free quark case), wave function become broader as t.

In this case,
$$\phi_{\Gamma}(r,t) = w_{\Gamma}(r,t)/w_{\Gamma}(r=0,t)$$

(normalized at spatial origin)

increase as t.

Answer to (2)

The wave function with "exp-exp" source become narower as t at all T.

• $\phi(r,t)$ should approaches certain shape • exp-exp source (convolution of two $\varphi(r)$) is too broad

It sugests there are bound states even above T_c .

Further analysis:

- \circ Wave functions with various sources
- \circ Mix point-exp and exp-exp correlators to give flat t-dependence

Outlook on (3)

Possible analysis:
Variational analysis
using the wave function — in progress

∜

Spectral function may have broad width at $T>0\,$ In this case, extraction of mass as the peak position of spectral function is difficult

Direct determination of the spectoral function from correlator:

— Study in progress

Nucl.Phys.B(Proc.Suppl.)63(1998)460 (Lattice 97).

Summary

- (1) We observed the temperature dependence of "exp-exp" correlator, as the best operator at T = 0. Clear T-dependece of exracted masses were observed. Uncertainty of them are rather large at T > 0. \bigcirc
- (2) Observed t-dependence of the wave function suggest there is certain bound state up to 1.5 T_c . Further verification is necessary. \bigcirc
- (3) Now under progress.For example, direct determination of the spectral function from the correlator is investigated.

Outlook

Other channels: baryons etc. Heavy quarkonium: J/ψ , ... Relation with topological quantities Precise determination of mass shift Spectral function

 \Rightarrow Larger, improved lattice

With dynamical quarks