Finite temperature hadron physics on the lattice

Takashi Umeda for QCD-TARO Collaboration

<u>Contents</u>

Introduction

Our Approach

Results of Simulation

(I) Light quark results

(II) Heavy quark results

Out look

The QCD-TARO Collaboration

Ph. de Forcrand^a, M. García Pérez^b, T. Hashimoto^c, S. Hioki^d,
R. Katayama^e, H. Matsufuru^j, O. Miyamura^e, A. Nakamura^f,
I.-O. Stamatescu^{g,h}, T. Takaishiⁱ and <u>T. Umeda^e</u>

- ^a SCSC, ETH-Zürich, Switzerland
- ^b Dept. Física Teórica, Univ. Autónoma de Madrid, Spain
- ^c Dept. Appl. Phys., Fac. Engineering, Fukui Univ., Japan
- ^d Dept. of Physics, Tezukayama Univ., Nara, Japan
- ^e Dept. of Physics, Hiroshima Univ., Japan
- f Res. Inst. for Inform. Sci. and Education, Hiroshima Univ., Japan
- ^g Inst. Theor. Physik, Univ. of Heidelberg, Germany
- ^h FEST, Heidelberg, Germany
- ^{*i*} Hiroshima University of Economics, Japan
- j RCNP , Osaka Univ., Japan

Physical goals:

- Finite Temperature QCD
- Finite Chemical Potential
- MCRG and Improved Actions

Introduction

Finite temperature hadron properties:

- What happens on hadrons or what new effect above T_c ?
- Change of masses and width near T_c

Example of effective theory:

NJL model analysis

c.f. Hatsuda and Kunihiro, Phys. Rep. 247 (1994) 221

- \circ Chiral restoration
- parity partner degeneracy
- \circ Above T_c : Soft modes

'99 Aug. Thermal field @ kyoto Univ.

Lattice QCD

Discretization of space-time (Euclidean space) with exact local gauge invariance

₩

Path integral formalism has a well-defined meaning

 \Rightarrow Monte Carlo Method

Finite Temperature lattice QCD

Our Approach

Temporal correlator ; \Rightarrow Pole mass (mass of temporal direction) \updownarrow Screening mass (mass of spatial direction) \Rightarrow Wave function Is there bound state at $T > T_c$? How can we show that ? \Rightarrow Spectral function in temporal(temperature) direction \rightarrow Anisotropic Lattice

Karsch ('82)

Burgers, Karsch, Nakamura and Stamatescu ('88)

anisotropy ξ $\xi = \frac{a_s}{a_t}$ $\xi_F = \frac{m_s}{m_t} (=\xi)$ calibration (I) Meson with light quark

- Temperature dependence of mass (Pole mass vs Screening mass)
- Hadronic bound state above T_c (?)
- Spectral function

Simulation parameters

$$0.10 \ GeV(0.61 \ GeV)$$

Effective mass

• Source dependence

 \circ effective mass at T>0

Temperature dependence of mass

'99 Aug. Thermal field @ kyoto Univ.

t-dependence of the wave function

$$w_{\Gamma}(r,t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}+\vec{r},t)\Gamma q(\vec{x},t)O^{\dagger}(0) \rangle$$

If there is no bound state (like free quark case), wave function becomes broader as t.

Spectral function

The two point correlation function of meson : C(t)

$$egin{aligned} C(t) &= \int K(t;\omega) A(\omega) d\omega \ K(t;\omega) &= e^{-\omega t} + e^{-\omega (N_t-t)} \end{aligned}$$

 $A(\omega)$: spectral function

Summary and Conclusion (I)

• Effective mass

- Significant change above T_c
- Wave functions
 - Narrower than free $q \bar{q}$ even at $N_t = 16, 12$. Still prefer to stay together.
- Spatial-mass (screening mass) vs temporal-mass (pole mass)
 - Grows above T_c .
 - Stronger growing of spatial-masses.
 - Consistent with NJL model analysis.

(II) Meson with heavy quark

(Problem) Spatial lattice spacing is coarse $(a_s^{-1} \sim 0.85 \text{GeV})$ Charmonium mass \sim a few GeV ∜ Heavy quark action :Fermilab action (O(a) improved (Clover action)) \implies Heavy quarkonium physics Clover action : Sheikholeslami, Wohlert('85) Fermilab action : El-Khadra, Kronfeld, Mackenzie ('97) We study the Charmonium at $T \ge 0$ • mass shift near T_c T.Hashimoto et al,('86)

• J/ψ suppression above T_c T.Matsui and H.Satz,('86)

Simulation parameters

On the same configuration as (I) (see p.5) Target meson mass is J/ψ mass : $m_V\sim 3.1 GeV$

Effective mass at T > 0

— Heavy quark field—

• parameter

$$1/\kappa = 9.690, \quad \gamma_F = 3.67$$

 \circ results at T = 0

 $m_{Ps} = 3.04(14) \text{GeV}, \quad m_V = 3.10(14) \text{GeV}$

• Finite Temperature

Summary and Conclusion (II)

- (1) We use the anisotropic Fermilab action for heavy quark system.
- (2) Meson correlator
 - No significant change at $N_t = 20$
 - Significant change at $N_t = 16, 12$

The Temperature dependence is different from that of light mesons . Especially behavior of vector meson change.

'99 Aug. Thermal field @ kyoto Univ.

<u>Out look</u>

• Precise determination of mass shift

- variational analysis
- Spectral function
- Fine lattice

 $\Rightarrow \text{Now under progress} \\ \text{Lattice size} : 16^2 \times 24 \times N_t \\ N_t = 96 \text{ (at } T \sim 0\text{)} \\ \beta = 4.56 \text{ (Symanzik action (tree))} \\ \text{Anisotropy} : \xi \sim 4.0 \\ \text{Cutoff} : a_s^{-1} \sim 1.6 \text{ GeV} \text{ (} a_s \sim 0.12 \text{ fm)} \end{aligned}$

- \circ More detailed analysis of Heavy quarkonium : $J/\psi, \cdots$
- Other channels : baryons etc.
- Relation with topological quantities.
- With dynamical quarks.