Meson Above

the Deconfining Transition

T. Umeda (Hiroshima Univ.) for the QCD-TARO Collaboration

- \cdot Introduction
- · Our Approach & Strategy
- \cdot Lattice QCD
- \cdot **Results**
- · Conclusion & Outlook

c.f. hep-lat/9901017

- The QCD-TARO Collaboration -

PH. DE FORCRAND

IPS, ETH-Zürich, CH-8092 Zürich, Switzerland

M. GARCÍA PÉREZ

Dept. Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

橋本 貴明

Department of Applied Physics, Faculty of Engineering, Fukui University, Fukui 910, Japan

日置 慎治

Department of Physics, Tezukayama University, Nara 631-8501, Japan

宮村 修 ,松古 栄夫 ,梅田 貴士

Department of Physics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

中村 純

Research Institute for Information Science and Education, Hiroshima University, Higashi-Hiroshima 739-8521, Japan

I. O. STAMATESCU

FEST, Schmeilweg 5, D-69118 Heidelberg, and Inst. Theor. Physik, Universität Heidelberg, D-69120 Heidelberg, Germany

and

高石 哲弥

Hiroshima University of Economics, Hiroshima 731-01, Japan

Main Work

- Finite Temperature QCD
- Finite Chemical Potential
- MCRG & Improved Action

Introduction

有限温度におけるハドロンの性質は どのように変化するか

クォーク・グルーオンプラズマ (QGP)

ある相転移温度 *T_c* で

ハドロン相 => QGP 相

NJL model

Our Approach

Lattice QCD を用いて有限温度での hadron(meson)の性質を調べる

- ◎ ユークリッド 空間で<mark>時間方向の</mark> correlator を測定
- ⇒ Pole mass (時間方向の mass) ↓ Screening mass (空間方向の mass)
- ⇒ Wave function Hadronic bound state を調べる 相転移後に meson は存在するか?

 \implies Spectral function ($\stackrel{\text{\tiny (X)}}{\approx}$)

Lattice QCD

ゲージ不変性を厳密に保ったまま (ユークリッド) 空間を離散化 ↓ 経路積分が厳密に定義できる → Monte Carlo 積分で実行

有限温度 Lattice QCD

温度: $T = \frac{1}{N_t a}$ (a:格子間隔)

Anisotoropic Lattice

Strategy

○ mass は $t \gg 1$ で求められる しかし、有限温度では $N_t a_\tau \rightarrow$ 小

1. Anisotropic Lattice

2. 良い hadronic operator を作る

 \Downarrow

© 良い hadronic operator を定義する。 これがT > 0でどのように振舞うか?

 $Omega T > T_c$ で hadronic bound state はどうなるか?

Correlator

$$\begin{split} G_M(\vec{x},t) &= \sum_{x,y_1,y_2} \omega_1(\vec{y}_1) \omega_2(\vec{y}_2) \\ \times \langle Tr[S(\vec{y}_1,0;\vec{z},t) \gamma_M \gamma_5 S^{\dagger}(\vec{y}_2,0;\vec{z}+\vec{x},t) \gamma_5 \gamma_M^{\dagger}] \rangle \end{split}$$

 $S(\vec{x}_1, t_1; \vec{x}_2, t_2) : \text{quark propagator}$ $\gamma_M = \gamma_5 , \gamma_1 , 1 , \gamma_1 \gamma_5$ $(M = P_s , V , S , A)$

※ Gauge fixing : Coulomb gauge

a, pは $T \simeq$ での**point-point**の P_s **correlator**の \vec{x} 依存から決定

Simulation parameter

- Lattice size $12^3 \times N_t$ $T = 1/N_t a_\tau$ $N_t = 72$, 20, 16, 12 ($T \simeq 0$, 0.93 T_c , 1.15 T_c , 1.5 T_c)
- $\beta = 5.68$, $\gamma = 4.0$, quenched
- #conf. = 60
- anisotoropy : $\xi = a_{\sigma}/a_{\tau} = 5.3(1)$
- cutoff: $a_{\sigma}^{-1} = 0.85(3)$, $a_{\tau}^{-1} = 4.5(2)$ GeV

•
$$\kappa_{\sigma} = 0.081$$
, 0.084, 0.086
 $\gamma_{F} = 4.05(2)$, 3.89(2), 3.78(2)
($m_{q} \simeq 0.17$, 0.12, 0.10 [GeV])

Source dependence

Effective mass : m_{eff}

$$m_{eff}(t) = -\ln \frac{G_M(\vec{x}=0,t)}{G_M(\vec{x}=0,t+1)} \longrightarrow m$$

exp-exp source が $T \simeq 0$ で ground state との overlap が大きい \Rightarrow 以降、exp-exp source を使用

Effective t-mass

- *T* > *T_c* で大きく変化
- • T_c で m_{Ps} と m_V が逆転?
- chiral symmetry の回復?

Temperature dependence of mass

screening mass t-mass VS $\kappa_{\sigma} = 0.086$ \circ m_{Ps} 0.4 △ m_v 0.3 \mathbb{H} □ m_s mass $\overline{\mathbb{V}}$ \bigtriangledown m_A 0.2 ● m_{Ps}^(σ)/ξ Æ • $m_v^{(\sigma)}/\xi$ 0.1 0.0 **Chiral limit** \Downarrow $\kappa = \kappa_{c}$ \cap m_{Ps} 0.4 △ m_v 0.3 \square m_s mass \mathbb{T} $\overline{\mathbb{M}}$ ∇ m_A 0.2 ₽ ₽ ● m_{Ps}^(σ)/ξ ᆂ ≛ • $m_v^{(\sigma)}/\xi$ 0.1 0.0 └─ 0.00 \square 0.06 0.02 0.04 0.08 0.10 0.12 1/N_t

Wave function

相転移後に meson は残っているか?

 $T \simeq 1.5T_c$ でも、まだ meson が 残っている

Conclusion

●有限温度での meson correlator の解析から

 $T > T_c$ meson の性質の変化が大きい Pole mass \leftrightarrow Screening mass chiral symmetry の回復

• Wave function の解析から
$$\sim 1.5T_c$$
でも meson が残っている

Outlook

- より大きな、改良された Lattice による精密測定
- 他の channel での測定。 baryon など
- Heavy quarkonium : J/ψ ...
- Dynamical quark を入れた full QCD
- Spectral function

Nucl.Phys.B(Proc.Suppl.)63(1998)460 (Lattice'97)

● Topological quantities との相関